test_rv.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.basic import Basic
  3. from sympy.core.containers import Tuple
  4. from sympy.core.function import Lambda
  5. from sympy.core.numbers import (Rational, nan, oo, pi)
  6. from sympy.core.relational import Eq
  7. from sympy.core.singleton import S
  8. from sympy.core.symbol import (Symbol, symbols)
  9. from sympy.functions.combinatorial.factorials import (FallingFactorial, binomial)
  10. from sympy.functions.elementary.exponential import (exp, log)
  11. from sympy.functions.elementary.trigonometric import (cos, sin)
  12. from sympy.functions.special.delta_functions import DiracDelta
  13. from sympy.integrals.integrals import integrate
  14. from sympy.logic.boolalg import (And, Or)
  15. from sympy.matrices.dense import Matrix
  16. from sympy.sets.sets import Interval
  17. from sympy.tensor.indexed import Indexed
  18. from sympy.stats import (Die, Normal, Exponential, FiniteRV, P, E, H, variance,
  19. density, given, independent, dependent, where, pspace, GaussianUnitaryEnsemble,
  20. random_symbols, sample, Geometric, factorial_moment, Binomial, Hypergeometric,
  21. DiscreteUniform, Poisson, characteristic_function, moment_generating_function,
  22. BernoulliProcess, Variance, Expectation, Probability, Covariance, covariance, cmoment,
  23. moment, median)
  24. from sympy.stats.rv import (IndependentProductPSpace, rs_swap, Density, NamedArgsMixin,
  25. RandomSymbol, sample_iter, PSpace, is_random, RandomIndexedSymbol, RandomMatrixSymbol)
  26. from sympy.testing.pytest import raises, skip, XFAIL, warns_deprecated_sympy
  27. from sympy.external import import_module
  28. from sympy.core.numbers import comp
  29. from sympy.stats.frv_types import BernoulliDistribution
  30. from sympy.core.symbol import Dummy
  31. from sympy.functions.elementary.piecewise import Piecewise
  32. def test_where():
  33. X, Y = Die('X'), Die('Y')
  34. Z = Normal('Z', 0, 1)
  35. assert where(Z**2 <= 1).set == Interval(-1, 1)
  36. assert where(Z**2 <= 1).as_boolean() == Interval(-1, 1).as_relational(Z.symbol)
  37. assert where(And(X > Y, Y > 4)).as_boolean() == And(
  38. Eq(X.symbol, 6), Eq(Y.symbol, 5))
  39. assert len(where(X < 3).set) == 2
  40. assert 1 in where(X < 3).set
  41. X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
  42. assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
  43. XX = given(X, And(X**2 <= 1, X >= 0))
  44. assert XX.pspace.domain.set == Interval(0, 1)
  45. assert XX.pspace.domain.as_boolean() == \
  46. And(0 <= X.symbol, X.symbol**2 <= 1, -oo < X.symbol, X.symbol < oo)
  47. with raises(TypeError):
  48. XX = given(X, X + 3)
  49. def test_random_symbols():
  50. X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
  51. assert set(random_symbols(2*X + 1)) == {X}
  52. assert set(random_symbols(2*X + Y)) == {X, Y}
  53. assert set(random_symbols(2*X + Y.symbol)) == {X}
  54. assert set(random_symbols(2)) == set()
  55. def test_characteristic_function():
  56. # Imports I from sympy
  57. from sympy.core.numbers import I
  58. X = Normal('X',0,1)
  59. Y = DiscreteUniform('Y', [1,2,7])
  60. Z = Poisson('Z', 2)
  61. t = symbols('_t')
  62. P = Lambda(t, exp(-t**2/2))
  63. Q = Lambda(t, exp(7*t*I)/3 + exp(2*t*I)/3 + exp(t*I)/3)
  64. R = Lambda(t, exp(2 * exp(t*I) - 2))
  65. assert characteristic_function(X).dummy_eq(P)
  66. assert characteristic_function(Y).dummy_eq(Q)
  67. assert characteristic_function(Z).dummy_eq(R)
  68. def test_moment_generating_function():
  69. X = Normal('X',0,1)
  70. Y = DiscreteUniform('Y', [1,2,7])
  71. Z = Poisson('Z', 2)
  72. t = symbols('_t')
  73. P = Lambda(t, exp(t**2/2))
  74. Q = Lambda(t, (exp(7*t)/3 + exp(2*t)/3 + exp(t)/3))
  75. R = Lambda(t, exp(2 * exp(t) - 2))
  76. assert moment_generating_function(X).dummy_eq(P)
  77. assert moment_generating_function(Y).dummy_eq(Q)
  78. assert moment_generating_function(Z).dummy_eq(R)
  79. def test_sample_iter():
  80. X = Normal('X',0,1)
  81. Y = DiscreteUniform('Y', [1, 2, 7])
  82. Z = Poisson('Z', 2)
  83. scipy = import_module('scipy')
  84. if not scipy:
  85. skip('Scipy is not installed. Abort tests')
  86. expr = X**2 + 3
  87. iterator = sample_iter(expr)
  88. expr2 = Y**2 + 5*Y + 4
  89. iterator2 = sample_iter(expr2)
  90. expr3 = Z**3 + 4
  91. iterator3 = sample_iter(expr3)
  92. def is_iterator(obj):
  93. if (
  94. hasattr(obj, '__iter__') and
  95. (hasattr(obj, 'next') or
  96. hasattr(obj, '__next__')) and
  97. callable(obj.__iter__) and
  98. obj.__iter__() is obj
  99. ):
  100. return True
  101. else:
  102. return False
  103. assert is_iterator(iterator)
  104. assert is_iterator(iterator2)
  105. assert is_iterator(iterator3)
  106. def test_pspace():
  107. X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
  108. x = Symbol('x')
  109. raises(ValueError, lambda: pspace(5 + 3))
  110. raises(ValueError, lambda: pspace(x < 1))
  111. assert pspace(X) == X.pspace
  112. assert pspace(2*X + 1) == X.pspace
  113. assert pspace(2*X + Y) == IndependentProductPSpace(Y.pspace, X.pspace)
  114. def test_rs_swap():
  115. X = Normal('x', 0, 1)
  116. Y = Exponential('y', 1)
  117. XX = Normal('x', 0, 2)
  118. YY = Normal('y', 0, 3)
  119. expr = 2*X + Y
  120. assert expr.subs(rs_swap((X, Y), (YY, XX))) == 2*XX + YY
  121. def test_RandomSymbol():
  122. X = Normal('x', 0, 1)
  123. Y = Normal('x', 0, 2)
  124. assert X.symbol == Y.symbol
  125. assert X != Y
  126. assert X.name == X.symbol.name
  127. X = Normal('lambda', 0, 1) # make sure we can use protected terms
  128. X = Normal('Lambda', 0, 1) # make sure we can use SymPy terms
  129. def test_RandomSymbol_diff():
  130. X = Normal('x', 0, 1)
  131. assert (2*X).diff(X)
  132. def test_random_symbol_no_pspace():
  133. x = RandomSymbol(Symbol('x'))
  134. assert x.pspace == PSpace()
  135. def test_overlap():
  136. X = Normal('x', 0, 1)
  137. Y = Normal('x', 0, 2)
  138. raises(ValueError, lambda: P(X > Y))
  139. def test_IndependentProductPSpace():
  140. X = Normal('X', 0, 1)
  141. Y = Normal('Y', 0, 1)
  142. px = X.pspace
  143. py = Y.pspace
  144. assert pspace(X + Y) == IndependentProductPSpace(px, py)
  145. assert pspace(X + Y) == IndependentProductPSpace(py, px)
  146. def test_E():
  147. assert E(5) == 5
  148. def test_H():
  149. X = Normal('X', 0, 1)
  150. D = Die('D', sides = 4)
  151. G = Geometric('G', 0.5)
  152. assert H(X, X > 0) == -log(2)/2 + S.Half + log(pi)/2
  153. assert H(D, D > 2) == log(2)
  154. assert comp(H(G).evalf().round(2), 1.39)
  155. def test_Sample():
  156. X = Die('X', 6)
  157. Y = Normal('Y', 0, 1)
  158. z = Symbol('z', integer=True)
  159. scipy = import_module('scipy')
  160. if not scipy:
  161. skip('Scipy is not installed. Abort tests')
  162. assert sample(X) in [1, 2, 3, 4, 5, 6]
  163. assert isinstance(sample(X + Y), float)
  164. assert P(X + Y > 0, Y < 0, numsamples=10).is_number
  165. assert E(X + Y, numsamples=10).is_number
  166. assert E(X**2 + Y, numsamples=10).is_number
  167. assert E((X + Y)**2, numsamples=10).is_number
  168. assert variance(X + Y, numsamples=10).is_number
  169. raises(TypeError, lambda: P(Y > z, numsamples=5))
  170. assert P(sin(Y) <= 1, numsamples=10) == 1.0
  171. assert P(sin(Y) <= 1, cos(Y) < 1, numsamples=10) == 1.0
  172. assert all(i in range(1, 7) for i in density(X, numsamples=10))
  173. assert all(i in range(4, 7) for i in density(X, X>3, numsamples=10))
  174. numpy = import_module('numpy')
  175. if not numpy:
  176. skip('Numpy is not installed. Abort tests')
  177. #Test Issue #21563: Output of sample must be a float or array
  178. assert isinstance(sample(X), (numpy.int32, numpy.int64))
  179. assert isinstance(sample(Y), numpy.float64)
  180. assert isinstance(sample(X, size=2), numpy.ndarray)
  181. with warns_deprecated_sympy():
  182. sample(X, numsamples=2)
  183. @XFAIL
  184. def test_samplingE():
  185. scipy = import_module('scipy')
  186. if not scipy:
  187. skip('Scipy is not installed. Abort tests')
  188. Y = Normal('Y', 0, 1)
  189. z = Symbol('z', integer=True)
  190. assert E(Sum(1/z**Y, (z, 1, oo)), Y > 2, numsamples=3).is_number
  191. def test_given():
  192. X = Normal('X', 0, 1)
  193. Y = Normal('Y', 0, 1)
  194. A = given(X, True)
  195. B = given(X, Y > 2)
  196. assert X == A == B
  197. def test_factorial_moment():
  198. X = Poisson('X', 2)
  199. Y = Binomial('Y', 2, S.Half)
  200. Z = Hypergeometric('Z', 4, 2, 2)
  201. assert factorial_moment(X, 2) == 4
  202. assert factorial_moment(Y, 2) == S.Half
  203. assert factorial_moment(Z, 2) == Rational(1, 3)
  204. x, y, z, l = symbols('x y z l')
  205. Y = Binomial('Y', 2, y)
  206. Z = Hypergeometric('Z', 10, 2, 3)
  207. assert factorial_moment(Y, l) == y**2*FallingFactorial(
  208. 2, l) + 2*y*(1 - y)*FallingFactorial(1, l) + (1 - y)**2*\
  209. FallingFactorial(0, l)
  210. assert factorial_moment(Z, l) == 7*FallingFactorial(0, l)/\
  211. 15 + 7*FallingFactorial(1, l)/15 + FallingFactorial(2, l)/15
  212. def test_dependence():
  213. X, Y = Die('X'), Die('Y')
  214. assert independent(X, 2*Y)
  215. assert not dependent(X, 2*Y)
  216. X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
  217. assert independent(X, Y)
  218. assert dependent(X, 2*X)
  219. # Create a dependency
  220. XX, YY = given(Tuple(X, Y), Eq(X + Y, 3))
  221. assert dependent(XX, YY)
  222. def test_dependent_finite():
  223. X, Y = Die('X'), Die('Y')
  224. # Dependence testing requires symbolic conditions which currently break
  225. # finite random variables
  226. assert dependent(X, Y + X)
  227. XX, YY = given(Tuple(X, Y), X + Y > 5) # Create a dependency
  228. assert dependent(XX, YY)
  229. def test_normality():
  230. X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
  231. x = Symbol('x', real=True)
  232. z = Symbol('z', real=True)
  233. dens = density(X - Y, Eq(X + Y, z))
  234. assert integrate(dens(x), (x, -oo, oo)) == 1
  235. def test_Density():
  236. X = Die('X', 6)
  237. d = Density(X)
  238. assert d.doit() == density(X)
  239. def test_NamedArgsMixin():
  240. class Foo(Basic, NamedArgsMixin):
  241. _argnames = 'foo', 'bar'
  242. a = Foo(S(1), S(2))
  243. assert a.foo == 1
  244. assert a.bar == 2
  245. raises(AttributeError, lambda: a.baz)
  246. class Bar(Basic, NamedArgsMixin):
  247. pass
  248. raises(AttributeError, lambda: Bar(S(1), S(2)).foo)
  249. def test_density_constant():
  250. assert density(3)(2) == 0
  251. assert density(3)(3) == DiracDelta(0)
  252. def test_cmoment_constant():
  253. assert variance(3) == 0
  254. assert cmoment(3, 3) == 0
  255. assert cmoment(3, 4) == 0
  256. x = Symbol('x')
  257. assert variance(x) == 0
  258. assert cmoment(x, 15) == 0
  259. assert cmoment(x, 0) == 1
  260. def test_moment_constant():
  261. assert moment(3, 0) == 1
  262. assert moment(3, 1) == 3
  263. assert moment(3, 2) == 9
  264. x = Symbol('x')
  265. assert moment(x, 2) == x**2
  266. def test_median_constant():
  267. assert median(3) == 3
  268. x = Symbol('x')
  269. assert median(x) == x
  270. def test_real():
  271. x = Normal('x', 0, 1)
  272. assert x.is_real
  273. def test_issue_10052():
  274. X = Exponential('X', 3)
  275. assert P(X < oo) == 1
  276. assert P(X > oo) == 0
  277. assert P(X < 2, X > oo) == 0
  278. assert P(X < oo, X > oo) == 0
  279. assert P(X < oo, X > 2) == 1
  280. assert P(X < 3, X == 2) == 0
  281. raises(ValueError, lambda: P(1))
  282. raises(ValueError, lambda: P(X < 1, 2))
  283. def test_issue_11934():
  284. density = {0: .5, 1: .5}
  285. X = FiniteRV('X', density)
  286. assert E(X) == 0.5
  287. assert P( X>= 2) == 0
  288. def test_issue_8129():
  289. X = Exponential('X', 4)
  290. assert P(X >= X) == 1
  291. assert P(X > X) == 0
  292. assert P(X > X+1) == 0
  293. def test_issue_12237():
  294. X = Normal('X', 0, 1)
  295. Y = Normal('Y', 0, 1)
  296. U = P(X > 0, X)
  297. V = P(Y < 0, X)
  298. W = P(X + Y > 0, X)
  299. assert W == P(X + Y > 0, X)
  300. assert U == BernoulliDistribution(S.Half, S.Zero, S.One)
  301. assert V == S.Half
  302. def test_is_random():
  303. X = Normal('X', 0, 1)
  304. Y = Normal('Y', 0, 1)
  305. a, b = symbols('a, b')
  306. G = GaussianUnitaryEnsemble('U', 2)
  307. B = BernoulliProcess('B', 0.9)
  308. assert not is_random(a)
  309. assert not is_random(a + b)
  310. assert not is_random(a * b)
  311. assert not is_random(Matrix([a**2, b**2]))
  312. assert is_random(X)
  313. assert is_random(X**2 + Y)
  314. assert is_random(Y + b**2)
  315. assert is_random(Y > 5)
  316. assert is_random(B[3] < 1)
  317. assert is_random(G)
  318. assert is_random(X * Y * B[1])
  319. assert is_random(Matrix([[X, B[2]], [G, Y]]))
  320. assert is_random(Eq(X, 4))
  321. def test_issue_12283():
  322. x = symbols('x')
  323. X = RandomSymbol(x)
  324. Y = RandomSymbol('Y')
  325. Z = RandomMatrixSymbol('Z', 2, 1)
  326. W = RandomMatrixSymbol('W', 2, 1)
  327. RI = RandomIndexedSymbol(Indexed('RI', 3))
  328. assert pspace(Z) == PSpace()
  329. assert pspace(RI) == PSpace()
  330. assert pspace(X) == PSpace()
  331. assert E(X) == Expectation(X)
  332. assert P(Y > 3) == Probability(Y > 3)
  333. assert variance(X) == Variance(X)
  334. assert variance(RI) == Variance(RI)
  335. assert covariance(X, Y) == Covariance(X, Y)
  336. assert covariance(W, Z) == Covariance(W, Z)
  337. def test_issue_6810():
  338. X = Die('X', 6)
  339. Y = Normal('Y', 0, 1)
  340. assert P(Eq(X, 2)) == S(1)/6
  341. assert P(Eq(Y, 0)) == 0
  342. assert P(Or(X > 2, X < 3)) == 1
  343. assert P(And(X > 3, X > 2)) == S(1)/2
  344. def test_issue_20286():
  345. n, p = symbols('n p')
  346. B = Binomial('B', n, p)
  347. k = Dummy('k', integer = True)
  348. eq = Sum(Piecewise((-p**k*(1 - p)**(-k + n)*log(p**k*(1 - p)**(-k + n)*binomial(n, k))*binomial(n, k), (k >= 0) & (k <= n)), (nan, True)), (k, 0, n))
  349. assert eq.dummy_eq(H(B))