1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647 |
- from sympy.assumptions.ask import (Q, ask)
- from sympy.core.add import Add
- from sympy.core.containers import Tuple
- from sympy.core.function import (Derivative, Function, diff)
- from sympy.core.mul import Mul
- from sympy.core import (GoldenRatio, TribonacciConstant)
- from sympy.core.numbers import (E, Float, I, Rational, oo, pi)
- from sympy.core.relational import (Eq, Gt, Lt, Ne)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
- from sympy.core.sympify import sympify
- from sympy.functions.combinatorial.factorials import binomial
- from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, re)
- from sympy.functions.elementary.exponential import (LambertW, exp, log)
- from sympy.functions.elementary.hyperbolic import (atanh, cosh, sinh, tanh)
- from sympy.functions.elementary.miscellaneous import (cbrt, root, sqrt)
- from sympy.functions.elementary.piecewise import Piecewise
- from sympy.functions.elementary.trigonometric import (acos, asin, atan, atan2, cos, sec, sin, tan)
- from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv)
- from sympy.integrals.integrals import Integral
- from sympy.logic.boolalg import (And, Or)
- from sympy.matrices.dense import Matrix
- from sympy.matrices import SparseMatrix
- from sympy.polys.polytools import Poly
- from sympy.printing.str import sstr
- from sympy.simplify.radsimp import denom
- from sympy.solvers.solvers import (nsolve, solve, solve_linear)
- from sympy.core.function import nfloat
- from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
- solve_undetermined_coeffs
- from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert
- from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
- det_quick, det_perm, det_minor, _simple_dens, denoms
- from sympy.physics.units import cm
- from sympy.polys.rootoftools import CRootOf
- from sympy.testing.pytest import slow, XFAIL, SKIP, raises
- from sympy.core.random import verify_numerically as tn
- from sympy.abc import a, b, c, d, e, k, h, p, x, y, z, t, q, m, R
- def NS(e, n=15, **options):
- return sstr(sympify(e).evalf(n, **options), full_prec=True)
- def test_swap_back():
- f, g = map(Function, 'fg')
- fx, gx = f(x), g(x)
- assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
- {fx: gx + 5, y: -gx - 3}
- assert solve(fx + gx*x - 2, [fx, gx], dict=True) == [{fx: 2, gx: 0}]
- assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y, gx: 0}]
- assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
- def guess_solve_strategy(eq, symbol):
- try:
- solve(eq, symbol)
- return True
- except (TypeError, NotImplementedError):
- return False
- def test_guess_poly():
- # polynomial equations
- assert guess_solve_strategy( S(4), x ) # == GS_POLY
- assert guess_solve_strategy( x, x ) # == GS_POLY
- assert guess_solve_strategy( x + a, x ) # == GS_POLY
- assert guess_solve_strategy( 2*x, x ) # == GS_POLY
- assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
- assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
- assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
- assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
- assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
- assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
- assert guess_solve_strategy(
- (x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
- def test_guess_poly_cv():
- # polynomial equations via a change of variable
- assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
- assert guess_solve_strategy(
- x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
- assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
- # polynomial equation multiplying both sides by x**n
- assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
- def test_guess_rational_cv():
- # rational functions
- assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
- assert guess_solve_strategy(
- (x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
- # rational functions via the change of variable y -> x**n
- assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
- #== GS_RATIONAL_CV_1
- def test_guess_transcendental():
- #transcendental functions
- assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
- assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
- assert guess_solve_strategy(
- exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
- assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
- assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
- assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
- def test_solve_args():
- # equation container, issue 5113
- ans = {x: -3, y: 1}
- eqs = (x + 5*y - 2, -3*x + 6*y - 15)
- assert all(solve(container(eqs), x, y) == ans for container in
- (tuple, list, set, frozenset))
- assert solve(Tuple(*eqs), x, y) == ans
- # implicit symbol to solve for
- assert set(solve(x**2 - 4)) == {S(2), -S(2)}
- assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
- assert solve(x - exp(x), x, implicit=True) == [exp(x)]
- # no symbol to solve for
- assert solve(42) == solve(42, x) == []
- assert solve([1, 2]) == []
- assert solve([sqrt(2)],[x]) == []
- # duplicate symbols raises
- raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x))
- raises(ValueError, lambda: solve(x, x, x))
- # no error in exclude
- assert solve(x, x, exclude=[y, y]) == [0]
- # duplicate symbols raises
- raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x))
- raises(ValueError, lambda: solve(x, x, x))
- # no error in exclude
- assert solve(x, x, exclude=[y, y]) == [0]
- # unordered symbols
- # only 1
- assert solve(y - 3, {y}) == [3]
- # more than 1
- assert solve(y - 3, {x, y}) == [{y: 3}]
- # multiple symbols: take the first linear solution+
- # - return as tuple with values for all requested symbols
- assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
- # - unless dict is True
- assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
- # - or no symbols are given
- assert solve(x + y - 3) == [{x: 3 - y}]
- # multiple symbols might represent an undetermined coefficients system
- assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
- assert solve((a + b)*x + b - c, [a, b]) == {a: -c, b: c}
- eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
- # - check that flags are obeyed
- sol = solve(eq, [h, p, k], exclude=[a, b, c])
- assert sol == {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
- assert solve(eq, [h, p, k], dict=True) == [sol]
- assert solve(eq, [h, p, k], set=True) == \
- ([h, p, k], {(-b/(2*a), 1/(4*a), (4*a*c - b**2)/(4*a))})
- # issue 23889 - polysys not simplified
- assert solve(eq, [h, p, k], exclude=[a, b, c], simplify=False) == \
- {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
- # but this only happens when system has a single solution
- args = (a + b)*x - b**2 + 2, a, b
- assert solve(*args) == [((b**2 - b*x - 2)/x, b)]
- # and if the system has a solution; the following doesn't so
- # an algebraic solution is returned
- assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
- [{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
- # failed single equation
- assert solve(1/(1/x - y + exp(y))) == []
- raises(
- NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
- # failed system
- # -- when no symbols given, 1 fails
- assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
- # both fail
- assert solve(
- (exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
- # -- when symbols given
- assert solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
- # symbol is a number
- assert solve(x**2 - pi, pi) == [x**2]
- # no equations
- assert solve([], [x]) == []
- # nonlinear system
- assert solve((x**2 - 4, y - 2), x, y) == [(-2, 2), (2, 2)]
- assert solve((x**2 - 4, y - 2), y, x) == [(2, -2), (2, 2)]
- assert solve((x**2 - 4 + z, y - 2 - z), a, z, y, x, set=True
- ) == ([a, z, y, x], {
- (a, z, z + 2, -sqrt(4 - z)),
- (a, z, z + 2, sqrt(4 - z))})
- # overdetermined system
- # - nonlinear
- assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
- # - linear
- assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
- # When one or more args are Boolean
- assert solve(Eq(x**2, 0.0)) == [0.0] # issue 19048
- assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
- assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
- assert not solve([Eq(x, x+1), x < 2], x)
- assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
- assert solve([Eq(x, x), Eq(x, x+1)], x) == []
- assert solve(True, x) == []
- assert solve([x - 1, False], [x], set=True) == ([], set())
- assert solve([-y*(x + y - 1)/2, (y - 1)/x/y + 1/y],
- set=True, check=False) == ([x, y], {(1 - y, y), (x, 0)})
- # ordering should be canonical, fastest to order by keys instead
- # of by size
- assert list(solve((y - 1, x - sqrt(3)*z)).keys()) == [x, y]
- # as set always returns as symbols, set even if no solution
- assert solve([x - 1, x], (y, x), set=True) == ([y, x], set())
- assert solve([x - 1, x], {y, x}, set=True) == ([x, y], set())
- def test_solve_polynomial1():
- assert solve(3*x - 2, x) == [Rational(2, 3)]
- assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
- assert set(solve(x**2 - 1, x)) == {-S.One, S.One}
- assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One}
- assert solve(x - y**3, x) == [y**3]
- rx = root(x, 3)
- assert solve(x - y**3, y) == [
- rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
- a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
- assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
- {
- x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
- y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
- }
- solution = {x: S.Zero, y: S.Zero}
- assert solve((x - y, x + y), x, y ) == solution
- assert solve((x - y, x + y), (x, y)) == solution
- assert solve((x - y, x + y), [x, y]) == solution
- assert set(solve(x**3 - 15*x - 4, x)) == {
- -2 + 3**S.Half,
- S(4),
- -2 - 3**S.Half
- }
- assert set(solve((x**2 - 1)**2 - a, x)) == \
- {sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
- sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))}
- def test_solve_polynomial2():
- assert solve(4, x) == []
- def test_solve_polynomial_cv_1a():
- """
- Test for solving on equations that can be converted to a polynomial equation
- using the change of variable y -> x**Rational(p, q)
- """
- assert solve( sqrt(x) - 1, x) == [1]
- assert solve( sqrt(x) - 2, x) == [4]
- assert solve( x**Rational(1, 4) - 2, x) == [16]
- assert solve( x**Rational(1, 3) - 3, x) == [27]
- assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
- def test_solve_polynomial_cv_1b():
- assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2}
- assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)}
- def test_solve_polynomial_cv_2():
- """
- Test for solving on equations that can be converted to a polynomial equation
- multiplying both sides of the equation by x**m
- """
- assert solve(x + 1/x - 1, x) in \
- [[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2],
- [ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]]
- def test_quintics_1():
- f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
- s = solve(f, check=False)
- for r in s:
- res = f.subs(x, r.n()).n()
- assert tn(res, 0)
- f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
- s = solve(f)
- for r in s:
- assert r.func == CRootOf
- # if one uses solve to get the roots of a polynomial that has a CRootOf
- # solution, make sure that the use of nfloat during the solve process
- # doesn't fail. Note: if you want numerical solutions to a polynomial
- # it is *much* faster to use nroots to get them than to solve the
- # equation only to get RootOf solutions which are then numerically
- # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
- # than [i.n() for i in solve(eq)] to get the numerical roots of eq.
- assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
- CRootOf(x**5 + 3*x**3 + 7, 0).n()
- def test_quintics_2():
- f = x**5 + 15*x + 12
- s = solve(f, check=False)
- for r in s:
- res = f.subs(x, r.n()).n()
- assert tn(res, 0)
- f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
- s = solve(f)
- for r in s:
- assert r.func == CRootOf
- assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [
- CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0),
- CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1),
- CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2),
- CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3),
- CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)]
- def test_quintics_3():
- y = x**5 + x**3 - 2**Rational(1, 3)
- assert solve(y) == solve(-y) == []
- def test_highorder_poly():
- # just testing that the uniq generator is unpacked
- sol = solve(x**6 - 2*x + 2)
- assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
- def test_solve_rational():
- """Test solve for rational functions"""
- assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
- def test_solve_conjugate():
- """Test solve for simple conjugate functions"""
- assert solve(conjugate(x) -3 + I) == [3 + I]
- def test_solve_nonlinear():
- assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
- assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
- {y: x*sqrt(exp(x))}]
- def test_issue_8666():
- x = symbols('x')
- assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
- assert solve(Eq(x + 1/x, 1/x), x) == []
- def test_issue_7228():
- assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half]
- def test_issue_7190():
- assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
- def test_issue_21004():
- x = symbols('x')
- f = x/sqrt(x**2+1)
- f_diff = f.diff(x)
- assert solve(f_diff, x) == []
- def test_issue_24650():
- x = symbols('x')
- r = solve(Eq(Piecewise((x, Eq(x, 0) | (x > 1))), 0))
- assert r == [0]
- r = checksol(Eq(Piecewise((x, Eq(x, 0) | (x > 1))), 0), x, sol=0)
- assert r is True
- def test_linear_system():
- x, y, z, t, n = symbols('x, y, z, t, n')
- assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
- assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
- assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
- assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
- M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
- [n + 1, n + 1, -2*n - 1, -(n + 1), 0],
- [-1, 0, 1, 0, 0]])
- assert solve_linear_system(M, x, y, z, t) == \
- {x: t*(-n-1)/n, y: 0, z: t*(-n-1)/n}
- assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
- @XFAIL
- def test_linear_system_xfail():
- # https://github.com/sympy/sympy/issues/6420
- M = Matrix([[0, 15.0, 10.0, 700.0],
- [1, 1, 1, 100.0],
- [0, 10.0, 5.0, 200.0],
- [-5.0, 0, 0, 0 ]])
- assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0}
- def test_linear_system_function():
- a = Function('a')
- assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
- a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
- def test_linear_system_symbols_doesnt_hang_1():
- def _mk_eqs(wy):
- # Equations for fitting a wy*2 - 1 degree polynomial between two points,
- # at end points derivatives are known up to order: wy - 1
- order = 2*wy - 1
- x, x0, x1 = symbols('x, x0, x1', real=True)
- y0s = symbols('y0_:{}'.format(wy), real=True)
- y1s = symbols('y1_:{}'.format(wy), real=True)
- c = symbols('c_:{}'.format(order+1), real=True)
- expr = sum([coeff*x**o for o, coeff in enumerate(c)])
- eqs = []
- for i in range(wy):
- eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i])
- eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i])
- return eqs, c
- #
- # The purpose of this test is just to see that these calls don't hang. The
- # expressions returned are complicated so are not included here. Testing
- # their correctness takes longer than solving the system.
- #
- for n in range(1, 7+1):
- eqs, c = _mk_eqs(n)
- solve(eqs, c)
- def test_linear_system_symbols_doesnt_hang_2():
- M = Matrix([
- [66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76],
- [10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78],
- [19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3],
- [74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6],
- [69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81],
- [50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35],
- [58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39],
- [42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24],
- [ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13],
- [19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51],
- [29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40],
- [15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37],
- [62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45],
- [ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50],
- [40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32],
- [33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1],
- [97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96],
- [40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52],
- [38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]])
- syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19')
- sol = {
- x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588,
- x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147,
- x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294,
- x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176,
- x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528,
- x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764,
- x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588,
- x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063,
- x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176,
- x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528,
- x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528,
- x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882,
- x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882,
- x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176,
- x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168,
- x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176,
- x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764,
- x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176,
- x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528
- }
- eqs = list(M * Matrix(syms + (1,)))
- assert solve(eqs, syms) == sol
- y = Symbol('y')
- eqs = list(y * M * Matrix(syms + (1,)))
- assert solve(eqs, syms) == sol
- def test_linear_systemLU():
- n = Symbol('n')
- M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
- assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
- x: 1 - 12*n/(n**2 + 18*n),
- y: 6*n/(n**2 + 18*n)}
- # Note: multiple solutions exist for some of these equations, so the tests
- # should be expected to break if the implementation of the solver changes
- # in such a way that a different branch is chosen
- @slow
- def test_solve_transcendental():
- from sympy.abc import a, b
- assert solve(exp(x) - 3, x) == [log(3)]
- assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)}
- assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
- assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
- assert solve(Eq(cos(x), sin(x)), x) == [pi/4]
- assert set(solve(exp(x) + exp(-x) - y, x)) in [{
- log(y/2 - sqrt(y**2 - 4)/2),
- log(y/2 + sqrt(y**2 - 4)/2),
- }, {
- log(y - sqrt(y**2 - 4)) - log(2),
- log(y + sqrt(y**2 - 4)) - log(2)},
- {
- log(y/2 - sqrt((y - 2)*(y + 2))/2),
- log(y/2 + sqrt((y - 2)*(y + 2))/2)}]
- assert solve(exp(x) - 3, x) == [log(3)]
- assert solve(Eq(exp(x), 3), x) == [log(3)]
- assert solve(log(x) - 3, x) == [exp(3)]
- assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
- assert solve(3**(x + 2), x) == []
- assert solve(3**(2 - x), x) == []
- assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
- assert solve(2*x + 5 + log(3*x - 2), x) == \
- [Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2]
- assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
- assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I}
- eq = 2*exp(3*x + 4) - 3
- ans = solve(eq, x) # this generated a failure in flatten
- assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
- assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
- assert solve(exp(x) + 1, x) == [pi*I]
- eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
- result = solve(eq, x)
- x0 = -log(2401)
- x1 = 3**Rational(1, 5)
- x2 = log(7**(7*x1/20))
- x3 = sqrt(2)
- x4 = sqrt(5)
- x5 = x3*sqrt(x4 - 5)
- x6 = x4 + 1
- x7 = 1/(3*log(7))
- x8 = -x4
- x9 = x3*sqrt(x8 - 5)
- x10 = x8 + 1
- ans = [x7*(x0 - 5*LambertW(x2*(-x5 + x6))),
- x7*(x0 - 5*LambertW(x2*(x5 + x6))),
- x7*(x0 - 5*LambertW(x2*(x10 - x9))),
- x7*(x0 - 5*LambertW(x2*(x10 + x9))),
- x7*(x0 - 5*LambertW(-log(7**(7*x1/5))))]
- assert result == ans, result
- # it works if expanded, too
- assert solve(eq.expand(), x) == result
- assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
- assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
- assert solve(z*cos(sin(x)) - y, x) == [
- pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
- -asin(acos(y/z) - 2*pi), asin(acos(y/z))]
- assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)]
- # issue 4508
- assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
- assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
- # issue 4507
- assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
- # issue 4506
- assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
- # issue 4505
- assert solve(z**x - y, x) == [log(y)/log(z)]
- # issue 4504
- assert solve(2**x - 10, x) == [1 + log(5)/log(2)]
- # issue 6744
- assert solve(x*y) == [{x: 0}, {y: 0}]
- assert solve([x*y]) == [{x: 0}, {y: 0}]
- assert solve(x**y - 1) == [{x: 1}, {y: 0}]
- assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
- assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
- assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
- # issue 4739
- assert solve(exp(log(5)*x) - 2**x, x) == [0]
- # issue 14791
- assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
- f = Function('f')
- assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
- assert solve(f(x) - f(0), x) == [0]
- assert solve(f(x) - f(2 - x), x) == [1]
- raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
- raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
- raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
- raises(ValueError, lambda: solve(f(x, y) - f(1), x))
- # misc
- # make sure that the right variables is picked up in tsolve
- # shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
- # for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
- raises(NotImplementedError, lambda:
- solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
- # watch out for recursive loop in tsolve
- raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
- # issue 7245
- assert solve(sin(sqrt(x))) == [0, pi**2]
- # issue 7602
- a, b = symbols('a, b', real=True, negative=False)
- assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
- '[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
- # issue 15325
- assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
- def test_solve_for_functions_derivatives():
- t = Symbol('t')
- x = Function('x')(t)
- y = Function('y')(t)
- a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
- soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
- assert soln == {
- x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
- y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
- }
- assert solve(x - 1, x) == [1]
- assert solve(3*x - 2, x) == [Rational(2, 3)]
- soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
- a22*y.diff(t) - b2], x.diff(t), y.diff(t))
- assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
- x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
- assert solve(x.diff(t) - 1, x.diff(t)) == [1]
- assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
- eqns = {3*x - 1, 2*y - 4}
- assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 }
- x = Symbol('x')
- f = Function('f')
- F = x**2 + f(x)**2 - 4*x - 1
- assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
- # Mixed cased with a Symbol and a Function
- x = Symbol('x')
- y = Function('y')(t)
- soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
- a22*y.diff(t) - b2], x, y.diff(t))
- assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
- x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
- # issue 13263
- x = Symbol('x')
- f = Function('f')
- soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)],
- f(x).diff(x), f(x).diff(x, 2))
- assert soln == { f(x).diff(x, 2): S(1)/2, f(x).diff(x): S(1)/2 }
- soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) -
- f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3))
- assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 }
- def test_issue_3725():
- f = Function('f')
- F = x**2 + f(x)**2 - 4*x - 1
- e = F.diff(x)
- assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
- def test_issue_3870():
- a, b, c, d = symbols('a b c d')
- A = Matrix(2, 2, [a, b, c, d])
- B = Matrix(2, 2, [0, 2, -3, 0])
- C = Matrix(2, 2, [1, 2, 3, 4])
- assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
- assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
- assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
- assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
- assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
- assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
- assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
- assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
- assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
- def test_solve_linear():
- w = Wild('w')
- assert solve_linear(x, x) == (0, 1)
- assert solve_linear(x, exclude=[x]) == (0, 1)
- assert solve_linear(x, symbols=[w]) == (0, 1)
- assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
- assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
- assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
- assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
- assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
- assert solve_linear(x**2/y, 1) == (y, x**2)
- assert solve_linear(w, x) in [(w, x), (x, w)]
- assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
- (y, -2 - cos(x)**2 - sin(x)**2)
- assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
- assert solve_linear(Eq(x, 3)) == (x, 3)
- assert solve_linear(1/(1/x - 2)) == (0, 0)
- assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
- assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
- assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
- assert solve_linear(0**x - 1) == (0**x - 1, 1)
- assert solve_linear(1 + 1/(x - 1)) == (x, 0)
- eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
- assert solve_linear(eq) == (0, 1)
- eq = cos(x)**2 + sin(x)**2 # = 1
- assert solve_linear(eq) == (0, 1)
- raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
- def test_solve_undetermined_coeffs():
- assert solve_undetermined_coeffs(
- a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x
- ) == {a: -2, b: 2, c: -1}
- # Test that rational functions work
- assert solve_undetermined_coeffs(a/x + b/(x + 1)
- - (2*x + 1)/(x**2 + x), [a, b], x) == {a: 1, b: 1}
- # Test cancellation in rational functions
- assert solve_undetermined_coeffs(
- ((c + 1)*a*x**2 + (c + 1)*b*x**2 +
- (c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1),
- [a, b, c], x) == \
- {a: -2, b: 2, c: -1}
- # multivariate
- X, Y, Z = y, x**y, y*x**y
- eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z
- coeffs = a, b, c
- syms = x, y
- assert solve_undetermined_coeffs(eq, coeffs) == {
- a: 1, b: 2, c: 3}
- assert solve_undetermined_coeffs(eq, coeffs, syms) == {
- a: 1, b: 2, c: 3}
- assert solve_undetermined_coeffs(eq, coeffs, *syms) == {
- a: 1, b: 2, c: 3}
- # check output format
- assert solve_undetermined_coeffs(a*x + a - 2, [a]) == []
- assert solve_undetermined_coeffs(a**2*x - 4*x, [a]) == [
- {a: -2}, {a: 2}]
- assert solve_undetermined_coeffs(0, [a]) == []
- assert solve_undetermined_coeffs(0, [a], dict=True) == []
- assert solve_undetermined_coeffs(0, [a], set=True) == ([], {})
- assert solve_undetermined_coeffs(1, [a]) == []
- abeq = a*x - 2*x + b - 3
- s = {b, a}
- assert solve_undetermined_coeffs(abeq, s, x) == {a: 2, b: 3}
- assert solve_undetermined_coeffs(abeq, s, x, set=True) == ([a, b], {(2, 3)})
- assert solve_undetermined_coeffs(sin(a*x) - sin(2*x), (a,)) is None
- assert solve_undetermined_coeffs(a*x + b*x - 2*x, (a, b)) == {a: 2 - b}
- def test_solve_inequalities():
- x = Symbol('x')
- sol = And(S.Zero < x, x < oo)
- assert solve(x + 1 > 1) == sol
- assert solve([x + 1 > 1]) == sol
- assert solve([x + 1 > 1], x) == sol
- assert solve([x + 1 > 1], [x]) == sol
- system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
- assert solve(system) == \
- And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
- And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
- x = Symbol('x', real=True)
- system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
- assert solve(system) == \
- Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
- # issues 6627, 3448
- assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
- assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
- assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6))
- assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo)
- assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
- assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo)
- assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
- assert solve(Eq(False, x)) == False
- assert solve(Eq(0, x)) == [0]
- assert solve(Eq(True, x)) == True
- assert solve(Eq(1, x)) == [1]
- assert solve(Eq(False, ~x)) == True
- assert solve(Eq(True, ~x)) == False
- assert solve(Ne(True, x)) == False
- assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1)
- def test_issue_4793():
- assert solve(1/x) == []
- assert solve(x*(1 - 5/x)) == [5]
- assert solve(x + sqrt(x) - 2) == [1]
- assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
- assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
- assert solve((x/(x + 1) + 3)**(-2)) == []
- assert solve(x/sqrt(x**2 + 1), x) == [0]
- assert solve(exp(x) - y, x) == [log(y)]
- assert solve(exp(x)) == []
- assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
- eq = 4*3**(5*x + 2) - 7
- ans = solve(eq, x)
- assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
- assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
- [x, y],
- {(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
- assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
- assert solve((x - 1)/(1 + 1/(x - 1))) == []
- assert solve(x**(y*z) - x, x) == [1]
- raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
- raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
- def test_PR1964():
- # issue 5171
- assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
- assert solve(sqrt(x - 1)) == [1]
- # issue 4462
- a = Symbol('a')
- assert solve(-3*a/sqrt(x), x) == []
- # issue 4486
- assert solve(2*x/(x + 2) - 1, x) == [2]
- # issue 4496
- assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)}
- # issue 4695
- f = Function('f')
- assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)]
- # issue 4497
- assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)]
- assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4]
- assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
- [
- {log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)},
- {2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)},
- {log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)},
- ]
- assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
- {log(-sqrt(3) + 2), log(sqrt(3) + 2)}
- assert set(solve(x**y + x**(2*y) - 1, x)) == \
- {(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)}
- assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
- assert solve(
- x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
- # if you do inversion too soon then multiple roots (as for the following)
- # will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
- E = S.Exp1
- assert solve(exp(3*x) - exp(3), x) in [
- [1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))],
- [1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
- ]
- # coverage test
- p = Symbol('p', positive=True)
- assert solve((1/p + 1)**(p + 1)) == []
- def test_issue_5197():
- x = Symbol('x', real=True)
- assert solve(x**2 + 1, x) == []
- n = Symbol('n', integer=True, positive=True)
- assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
- x = Symbol('x', positive=True)
- y = Symbol('y')
- assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
- # not {x: -3, y: 1} b/c x is positive
- # The solution following should not contain (-sqrt(2), sqrt(2))
- assert solve([(x + y), 2 - y**2], x, y) == [(sqrt(2), -sqrt(2))]
- y = Symbol('y', positive=True)
- # The solution following should not contain {y: -x*exp(x/2)}
- assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
- x, y, z = symbols('x y z', positive=True)
- assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
- def test_checking():
- assert set(
- solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)}
- assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)}
- # {x: 0, y: 4} sets denominator to 0 in the following so system should return None
- assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
- # 0 sets denominator of 1/x to zero so None is returned
- assert solve(1/(1/x + 2)) == []
- def test_issue_4671_4463_4467():
- assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)],
- [-sqrt(5), sqrt(5)])
- assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
- -sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
- C1, C2 = symbols('C1 C2')
- f = Function('f')
- assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
- a = Symbol('a')
- E = S.Exp1
- assert solve(1 - log(a + 4*x**2), x) in (
- [-sqrt(-a + E)/2, sqrt(-a + E)/2],
- [sqrt(-a + E)/2, -sqrt(-a + E)/2]
- )
- assert solve(log(a**(-3) - x**2)/a, x) in (
- [-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
- [sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
- assert solve(1 - log(a + 4*x**2), x) in (
- [-sqrt(-a + E)/2, sqrt(-a + E)/2],
- [sqrt(-a + E)/2, -sqrt(-a + E)/2],)
- assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)]
- assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
- assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
- {log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
- log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a}
- assert solve(atan(x) - 1) == [tan(1)]
- def test_issue_5132():
- r, t = symbols('r,t')
- assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
- {(
- -sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
- (sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))}
- assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
- [(log(sin(Rational(1, 3))), Rational(1, 3))]
- assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
- [(log(-sin(log(3))), -log(3))]
- assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
- {(log(-sin(2)), -S(2)), (log(sin(2)), S(2))}
- eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
- assert solve(eqs, set=True) == \
- ([y, z], {
- (-log(3), sqrt(-exp(2*x) - sin(log(3)))),
- (-log(3), -sqrt(-exp(2*x) - sin(log(3))))})
- assert solve(eqs, x, z, set=True) == (
- [x, z],
- {(x, sqrt(-exp(2*x) + sin(y))), (x, -sqrt(-exp(2*x) + sin(y)))})
- assert set(solve(eqs, x, y)) == \
- {
- (log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
- (log(-z**2 - sin(log(3)))/2, -log(3))}
- assert set(solve(eqs, y, z)) == \
- {
- (-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
- (-log(3), sqrt(-exp(2*x) - sin(log(3))))}
- eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
- assert solve(eqs, set=True) == ([y, z], {
- (-log(3), -exp(2*x) - sin(log(3)))})
- assert solve(eqs, x, z, set=True) == (
- [x, z], {(x, -exp(2*x) + sin(y))})
- assert set(solve(eqs, x, y)) == {
- (log(-sqrt(-z - sin(log(3)))), -log(3)),
- (log(-z - sin(log(3)))/2, -log(3))}
- assert solve(eqs, z, y) == \
- [(-exp(2*x) - sin(log(3)), -log(3))]
- assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
- [x, y], {(S.One, S(3)), (S(3), S.One)})
- assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
- {(S.One, S(3)), (S(3), S.One)}
- def test_issue_5335():
- lam, a0, conc = symbols('lam a0 conc')
- a = 0.005
- b = 0.743436700916726
- eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
- a0*(1 - x/2)*x - 1*y - b*y,
- x + y - conc]
- sym = [x, y, a0]
- # there are 4 solutions obtained manually but only two are valid
- assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
- assert len(solve(eqs, sym)) == 2 # cf below with rational=False
- @SKIP("Hangs")
- def _test_issue_5335_float():
- # gives ZeroDivisionError: polynomial division
- lam, a0, conc = symbols('lam a0 conc')
- a = 0.005
- b = 0.743436700916726
- eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
- a0*(1 - x/2)*x - 1*y - b*y,
- x + y - conc]
- sym = [x, y, a0]
- assert len(solve(eqs, sym, rational=False)) == 2
- def test_issue_5767():
- assert set(solve([x**2 + y + 4], [x])) == \
- {(-sqrt(-y - 4),), (sqrt(-y - 4),)}
- def _make_example_24609():
- D, R, H, B_g, V, D_c = symbols("D, R, H, B_g, V, D_c", real=True, positive=True)
- Sigma_f, Sigma_a, nu = symbols("Sigma_f, Sigma_a, nu", real=True, positive=True)
- x = symbols("x", real=True, positive=True)
- eq = (
- 2**(S(2)/3)*pi**(S(2)/3)*D_c*(S(231361)/10000 + pi**2/x**2)
- /(6*V**(S(2)/3)*x**(S(1)/3))
- - 2**(S(2)/3)*pi**(S(8)/3)*D_c/(2*V**(S(2)/3)*x**(S(7)/3))
- )
- expected = 100*sqrt(2)*pi/481
- return eq, expected, x
- def test_issue_24609():
- # https://github.com/sympy/sympy/issues/24609
- eq, expected, x = _make_example_24609()
- assert solve(eq, x, simplify=True) == [expected]
- [solapprox] = solve(eq.n(), x)
- assert abs(solapprox - expected.n()) < 1e-14
- @XFAIL
- def test_issue_24609_xfail():
- #
- # This returns 5 solutions when it should be 1 (with x positive).
- # Simplification reveals all solutions to be equivalent. It is expected
- # that solve without simplify=True returns duplicate solutions in some
- # cases but the core of this equation is a simple quadratic that can easily
- # be solved without introducing any redundant solutions:
- #
- # >>> print(factor_terms(eq.as_numer_denom()[0]))
- # 2**(2/3)*pi**(2/3)*D_c*V**(2/3)*x**(7/3)*(231361*x**2 - 20000*pi**2)
- #
- eq, expected, x = _make_example_24609()
- assert len(solve(eq, x)) == [expected]
- #
- # We do not want to pass this test just by using simplify so if the above
- # passes then uncomment the additional test below:
- #
- # assert len(solve(eq, x, simplify=False)) == 1
- def test_polysys():
- assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
- {(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)),
- (1 - sqrt(5), 2 + sqrt(5))}
- assert solve([x**2 + y - 2, x**2 + y]) == []
- # the ordering should be whatever the user requested
- assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
- y - 3, x - y - 4], (y, x))
- @slow
- def test_unrad1():
- raises(NotImplementedError, lambda:
- unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
- raises(NotImplementedError, lambda:
- unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
- s = symbols('s', cls=Dummy)
- # checkers to deal with possibility of answer coming
- # back with a sign change (cf issue 5203)
- def check(rv, ans):
- assert bool(rv[1]) == bool(ans[1])
- if ans[1]:
- return s_check(rv, ans)
- e = rv[0].expand()
- a = ans[0].expand()
- return e in [a, -a] and rv[1] == ans[1]
- def s_check(rv, ans):
- # get the dummy
- rv = list(rv)
- d = rv[0].atoms(Dummy)
- reps = list(zip(d, [s]*len(d)))
- # replace s with this dummy
- rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
- ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
- return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
- str(rv[1]) == str(ans[1])
- assert unrad(1) is None
- assert check(unrad(sqrt(x)),
- (x, []))
- assert check(unrad(sqrt(x) + 1),
- (x - 1, []))
- assert check(unrad(sqrt(x) + root(x, 3) + 2),
- (s**3 + s**2 + 2, [s, s**6 - x]))
- assert check(unrad(sqrt(x)*root(x, 3) + 2),
- (x**5 - 64, []))
- assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
- (x**3 - (x + 1)**2, []))
- assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
- (-2*sqrt(2)*x - 2*x + 1, []))
- assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
- (16*x - 9, []))
- assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
- (5*x**2 - 4*x, []))
- assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
- ((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
- assert check(unrad(sqrt(x) + sqrt(1 - x)),
- (2*x - 1, []))
- assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
- (x**2 - x + 16, []))
- assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
- (5*x**2 - 2*x + 1, []))
- assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
- (25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
- (25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
- assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
- (41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
- assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, []))
- eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
- assert check(unrad(eq),
- (16*x**2 - 9*x, []))
- assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)}
- assert solve(eq) == []
- # but this one really does have those solutions
- assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
- {S.Zero, Rational(9, 16)}
- assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
- (S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
- assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
- (x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
- assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
- (4*x*y + x - 4*y, []))
- assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
- (x**2 - x + 4, []))
- # http://tutorial.math.lamar.edu/
- # Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
- assert solve(Eq(x, sqrt(x + 6))) == [3]
- assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
- assert solve(Eq(1, x + sqrt(2*x - 3))) == []
- assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)}
- assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)}
- assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
- # http://www.purplemath.com/modules/solverad.htm
- assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
- assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
- {Rational(-1, 2), Rational(-1, 3)}
- assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)}
- assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
- assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
- assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
- assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
- assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
- assert solve(sqrt(x) - 2 - 5) == [49]
- assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
- assert solve(sqrt(x - 1) - x + 7) == [10]
- assert solve(sqrt(x - 2) - 5) == [27]
- assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
- assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
- # don't posify the expression in unrad and do use _mexpand
- z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
- p = posify(z)[0]
- assert solve(p) == []
- assert solve(z) == []
- assert solve(z + 6*I) == [Rational(-1, 11)]
- assert solve(p + 6*I) == []
- # issue 8622
- assert unrad(root(x + 1, 5) - root(x, 3)) == (
- -(x**5 - x**3 - 3*x**2 - 3*x - 1), [])
- # issue #8679
- assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
- (s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
- # for coverage
- assert check(unrad(sqrt(x) + root(x, 3) + y),
- (s**3 + s**2 + y, [s, s**6 - x]))
- assert solve(sqrt(x) + root(x, 3) - 2) == [1]
- raises(NotImplementedError, lambda:
- solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
- # fails through a different code path
- raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
- # unrad some
- assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
- x + (x**Rational(1, 3) + x)**Rational(5, 2)]
- assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
- (s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
- 192*s - 56, [s, s**2 - x]))
- e = root(x + 1, 3) + root(x, 3)
- assert unrad(e) == (2*x + 1, [])
- eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
- assert check(unrad(eq),
- (15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
- assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
- (s**3 + s - 1, [s, s**4 - x]))
- assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
- (x**3 + 2*x**2 + x - 1, []))
- assert unrad(x**0.5) is None
- assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
- (s**3 + s + t, [s, s**5 - x - y]))
- assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
- (s**3 + s + x, [s, s**5 - x - y]))
- assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
- (s**5 + s**3 + s - y, [s, s**5 - x - y]))
- assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
- (s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 +
- 10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1]))
- raises(NotImplementedError, lambda:
- unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
- # the simplify flag should be reset to False for unrad results;
- # if it's not then this next test will take a long time
- assert solve(root(x, 3) + root(x, 5) - 2) == [1]
- eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
- assert check(unrad(eq),
- ((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
- ans = S('''
- [4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
- 12459439/52734375)**(1/3)) +
- 4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
- assert solve(eq) == ans
- # duplicate radical handling
- assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
- (s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
- # cov post-processing
- e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
- assert check(unrad(e),
- (s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
- [s, s**3 - x**2 - 1]))
- e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
- assert check(unrad(e),
- (s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
- [s, s**3 - x - 1]))
- assert check(unrad(e, _reverse=True),
- (s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
- [s, s**2 - x - sqrt(x + 1)]))
- # this one needs r0, r1 reversal to work
- assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
- (s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
- 32*s + 17, [s, s**6 - x]))
- # why does this pass
- assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
- -(x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5
- - cosh(x)**5), [])
- # and this fail?
- #assert unrad(sqrt(cosh(x)/x) + root(x + 1, 3)*sqrt(x) - 1) == (
- # -s**6 + 6*s**5 - 15*s**4 + 20*s**3 - 15*s**2 + 6*s + x**5 +
- # 2*x**4 + x**3 - 1, [s, s**2 - cosh(x)/x])
- # watch for symbols in exponents
- assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
- assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
- (s**(2*y) + s + 1, [s, s**3 - x - y]))
- # should _Q be so lenient?
- assert unrad(x**(S.Half/y) + y, x) == (x**(1/y) - y**2, [])
- # This tests two things: that if full unrad is attempted and fails
- # the solution should still be found; also it tests that the use of
- # composite
- assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
- assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
- 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
- # watch out for when the cov doesn't involve the symbol of interest
- eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
- assert solve(eq, y) == [
- 2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 +
- S(512)/343)**(S(1)/3)*(-S(1)/2 - sqrt(3)*I/2), 2**(S(2)/3)*(27*x +
- 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 +
- S(512)/343)**(S(1)/3)*(-S(1)/2 + sqrt(3)*I/2), 2**(S(2)/3)*(27*x +
- 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)]
- eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
- assert check(unrad(eq),
- (3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
- assert check(unrad(eq - 2),
- (3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
- 12*s**3 + 7, [s, s**15 - x]))
- assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
- (s*(4096*s**9 + 960*s**8 + 48*s**7 - s**6 - 1728),
- [s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
- assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
- (343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
- 3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
- 1])) # orig expr has one real root: -0.048
- assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
- (729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
- 3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
- 1])) # orig expr has 2 real roots: -0.91, -0.15
- assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
- (729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
- 453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- - 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
- # orig expr has 1 real root: 19.53
- ans = solve(sqrt(x) + sqrt(x + 1) -
- sqrt(1 - x) - sqrt(2 + x))
- assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
- # the fence optimization problem
- # https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
- F = Symbol('F')
- eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
- ans = F*Rational(2, 7) - sqrt(2)*F/14
- X = solve(eq, x, check=False)
- for xi in reversed(X): # reverse since currently, ans is the 2nd one
- Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
- if any((a - ans).expand().is_zero for a in Y):
- break
- else:
- assert None # no answer was found
- assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
- [(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
- sqrt(93)/6)**(1/3))**3]''')
- assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
- [(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
- sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
- sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
- sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
- sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
- assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
- [(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
- 2)**2]''')
- eq = S('''
- -x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
- + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
- sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- - 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
- assert check(unrad(eq),
- (s*-(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 +
- 51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 +
- 1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 +
- 471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
- 165240*x + 61484) + 810]))
- assert solve(eq) == [] # not other code errors
- eq = root(x, 3) - root(y, 3) + root(x, 5)
- assert check(unrad(eq),
- (s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x]))
- eq = root(x, 3) + root(y, 3) + root(x*y, 4)
- assert check(unrad(eq),
- (s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 -
- 3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 -
- 3*s**3*y**5 - y**6), [s, s**4 - x*y]))
- raises(NotImplementedError,
- lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5)))
- # Test unrad with an Equality
- eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5))
- assert check(unrad(eq),
- (-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x]))
- # make sure buried radicals are exposed
- s = sqrt(x) - 1
- assert unrad(s**2 - s**3) == (x**3 - 6*x**2 + 9*x - 4, [])
- # make sure numerators which are already polynomial are rejected
- assert unrad((x/(x + 1) + 3)**(-2), x) is None
- # https://github.com/sympy/sympy/issues/23707
- eq = sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y))
- assert solve(eq, y) == [x - 1]
- assert unrad(eq) is None
- @slow
- def test_unrad_slow():
- # this has roots with multiplicity > 1; there should be no
- # repeats in roots obtained, however
- eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2))))
- assert solve(eq) == [S.Half]
- @XFAIL
- def test_unrad_fail():
- # this only works if we check real_root(eq.subs(x, Rational(1, 3)))
- # but checksol doesn't work like that
- assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)]
- assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
- -1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
- def test_checksol():
- x, y, r, t = symbols('x, y, r, t')
- eq = r - x**2 - y**2
- dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
- x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
- assert checksol(eq, dict_var_soln) == True
- assert checksol(Eq(x, False), {x: False}) is True
- assert checksol(Ne(x, False), {x: False}) is False
- assert checksol(Eq(x < 1, True), {x: 0}) is True
- assert checksol(Eq(x < 1, True), {x: 1}) is False
- assert checksol(Eq(x < 1, False), {x: 1}) is True
- assert checksol(Eq(x < 1, False), {x: 0}) is False
- assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
- assert checksol([x - 1, x**2 - 1], x, 1) is True
- assert checksol([x - 1, x**2 - 2], x, 1) is False
- assert checksol(Poly(x**2 - 1), x, 1) is True
- assert checksol(0, {}) is True
- assert checksol([1e-10, x - 2], x, 2) is False
- assert checksol([0.5, 0, x], x, 0) is False
- assert checksol(y, x, 2) is False
- assert checksol(x+1e-10, x, 0, numerical=True) is True
- assert checksol(x+1e-10, x, 0, numerical=False) is False
- assert checksol(exp(92*x), {x: log(sqrt(2)/2)}) is False
- assert checksol(exp(92*x), {x: log(sqrt(2)/2) + I*pi}) is False
- assert checksol(1/x**5, x, 1000) is False
- raises(ValueError, lambda: checksol(x, 1))
- raises(ValueError, lambda: checksol([], x, 1))
- def test__invert():
- assert _invert(x - 2) == (2, x)
- assert _invert(2) == (2, 0)
- assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
- assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
- assert _invert(a, x) == (a, 0)
- def test_issue_4463():
- assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
- assert solve(x**x) == []
- assert solve(x**x - 2) == [exp(LambertW(log(2)))]
- assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
- @slow
- def test_issue_5114_solvers():
- a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
- # there is no 'a' in the equation set but this is how the
- # problem was originally posed
- syms = a, b, c, f, h, k, n
- eqs = [b + r/d - c/d,
- c*(1/d + 1/e + 1/g) - f/g - r/d,
- f*(1/g + 1/i + 1/j) - c/g - h/i,
- h*(1/i + 1/l + 1/m) - f/i - k/m,
- k*(1/m + 1/o + 1/p) - h/m - n/p,
- n*(1/p + 1/q) - k/p]
- assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
- def test_issue_5849():
- #
- # XXX: This system does not have a solution for most values of the
- # parameters. Generally solve returns the empty set for systems that are
- # generically inconsistent.
- #
- I1, I2, I3, I4, I5, I6 = symbols('I1:7')
- dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
- e = (
- I1 - I2 - I3,
- I3 - I4 - I5,
- I4 + I5 - I6,
- -I1 + I2 + I6,
- -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
- -I4 + dQ4,
- -I2 + dQ2,
- 2*I3 + 2*I5 + 3*I6 - Q2,
- I4 - 2*I5 + 2*Q4 + dI4
- )
- ans = [{
- I1: I2 + I3,
- dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
- I4: I3 - I5,
- dQ4: I3 - I5,
- Q4: -I3/2 + 3*I5/2 - dI4/2,
- dQ2: I2,
- Q2: 2*I3 + 2*I5 + 3*I6}]
- v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
- assert solve(e, *v, manual=True, check=False, dict=True) == ans
- assert solve(e, *v, manual=True, check=False) == [
- tuple([a.get(i, i) for i in v]) for a in ans]
- assert solve(e, *v, manual=True) == []
- assert solve(e, *v) == []
- # the matrix solver (tested below) doesn't like this because it produces
- # a zero row in the matrix. Is this related to issue 4551?
- assert [ei.subs(
- ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
- def test_issue_5849_matrix():
- '''Same as test_issue_5849 but solved with the matrix solver.
- A solution only exists if I3 == I6 which is not generically true,
- but `solve` does not return conditions under which the solution is
- valid, only a solution that is canonical and consistent with the input.
- '''
- # a simple example with the same issue
- # assert solve([x+y+z, x+y], [x, y]) == {x: y}
- # the longer example
- I1, I2, I3, I4, I5, I6 = symbols('I1:7')
- dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
- e = (
- I1 - I2 - I3,
- I3 - I4 - I5,
- I4 + I5 - I6,
- -I1 + I2 + I6,
- -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
- -I4 + dQ4,
- -I2 + dQ2,
- 2*I3 + 2*I5 + 3*I6 - Q2,
- I4 - 2*I5 + 2*Q4 + dI4
- )
- assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == []
- def test_issue_21882():
- a, b, c, d, f, g, k = unknowns = symbols('a, b, c, d, f, g, k')
- equations = [
- -k*a + b + 5*f/6 + 2*c/9 + 5*d/6 + 4*a/3,
- -k*f + 4*f/3 + d/2,
- -k*d + f/6 + d,
- 13*b/18 + 13*c/18 + 13*a/18,
- -k*c + b/2 + 20*c/9 + a,
- -k*b + b + c/18 + a/6,
- 5*b/3 + c/3 + a,
- 2*b/3 + 2*c + 4*a/3,
- -g,
- ]
- answer = [
- {a: 0, f: 0, b: 0, d: 0, c: 0, g: 0},
- {a: 0, f: -d, b: 0, k: S(5)/6, c: 0, g: 0},
- {a: -2*c, f: 0, b: c, d: 0, k: S(13)/18, g: 0}]
- # but not {a: 0, f: 0, b: 0, k: S(3)/2, c: 0, d: 0, g: 0}
- # since this is already covered by the first solution
- got = solve(equations, unknowns, dict=True)
- assert got == answer, (got,answer)
- def test_issue_5901():
- f, g, h = map(Function, 'fgh')
- a = Symbol('a')
- D = Derivative(f(x), x)
- G = Derivative(g(a), a)
- assert solve(f(x) + f(x).diff(x), f(x)) == \
- [-D]
- assert solve(f(x) - 3, f(x)) == \
- [3]
- assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
- [3*D]
- assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
- {f(x): 3*D}
- assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
- [(3*D, 9*D**2 + 4)]
- assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
- h(a), g(a), set=True) == \
- ([h(a), g(a)], {
- (-sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a)),
- (sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a))}), solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
- h(a), g(a), set=True)
- args = [[f(x).diff(x, 2)*(f(x) + g(x)), 2 - g(x)**2], f(x), g(x)]
- assert solve(*args, set=True)[1] == \
- {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}
- eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
- assert solve(eqs, f(x), g(x), set=True) == \
- ([f(x), g(x)], {
- (-sqrt(2*D - 2), S(2)),
- (sqrt(2*D - 2), S(2)),
- (-sqrt(2*D + 2), -S(2)),
- (sqrt(2*D + 2), -S(2))})
- # the underlying problem was in solve_linear that was not masking off
- # anything but a Mul or Add; it now raises an error if it gets anything
- # but a symbol and solve handles the substitutions necessary so solve_linear
- # won't make this error
- raises(
- ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
- assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
- (f(x) + Derivative(f(x), x), 1)
- assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
- (f(x) + Integral(x, (x, y)), 1)
- assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
- (x + f(x) + Integral(x, (x, y)), 1)
- assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
- (x, -f(y) - Integral(x, (x, y)))
- assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
- (x, 1/a)
- assert solve_linear(x + Derivative(2*x, x)) == \
- (x, -2)
- assert solve_linear(x + Integral(x, y), symbols=[x]) == \
- (x, 0)
- assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
- (x, 2/(y + 1))
- assert set(solve(x + exp(x)**2, exp(x))) == \
- {-sqrt(-x), sqrt(-x)}
- assert solve(x + exp(x), x, implicit=True) == \
- [-exp(x)]
- assert solve(cos(x) - sin(x), x, implicit=True) == []
- assert solve(x - sin(x), x, implicit=True) == \
- [sin(x)]
- assert solve(x**2 + x - 3, x, implicit=True) == \
- [-x**2 + 3]
- assert solve(x**2 + x - 3, x**2, implicit=True) == \
- [-x + 3]
- def test_issue_5912():
- assert set(solve(x**2 - x - 0.1, rational=True)) == \
- {S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half}
- ans = solve(x**2 - x - 0.1, rational=False)
- assert len(ans) == 2 and all(a.is_Number for a in ans)
- ans = solve(x**2 - x - 0.1)
- assert len(ans) == 2 and all(a.is_Number for a in ans)
- def test_float_handling():
- def test(e1, e2):
- return len(e1.atoms(Float)) == len(e2.atoms(Float))
- assert solve(x - 0.5, rational=True)[0].is_Rational
- assert solve(x - 0.5, rational=False)[0].is_Float
- assert solve(x - S.Half, rational=False)[0].is_Rational
- assert solve(x - 0.5, rational=None)[0].is_Float
- assert solve(x - S.Half, rational=None)[0].is_Rational
- assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
- for contain in [list, tuple, set]:
- ans = nfloat(contain([1 + 2*x]))
- assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
- k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
- assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
- assert test(nfloat(cos(2*x)), cos(2.0*x))
- assert test(nfloat(3*x**2), 3.0*x**2)
- assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
- assert test(nfloat(exp(2*x)), exp(2.0*x))
- assert test(nfloat(x/3), x/3.0)
- assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1),
- x**4 + 2.0*x + 1.94495694631474)
- # don't call nfloat if there is no solution
- tot = 100 + c + z + t
- assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
- def test_check_assumptions():
- x = symbols('x', positive=True)
- assert solve(x**2 - 1) == [1]
- def test_issue_6056():
- assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
- assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \
- [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
- assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \
- [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
- def test_issue_5673():
- eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
- assert checksol(eq, x, 2) is True
- assert checksol(eq, x, 2, numerical=False) is None
- def test_exclude():
- R, C, Ri, Vout, V1, Vminus, Vplus, s = \
- symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
- Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
- eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
- Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
- C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
- -Vminus + Vplus]
- assert solve(eqs, exclude=s*C*R) == [
- {
- Rf: Ri*(C*R*s + 1)**2/(C*R*s),
- Vminus: Vplus,
- V1: 2*Vplus + Vplus/(C*R*s),
- Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
- {
- Vplus: 0,
- Vminus: 0,
- V1: 0,
- Vout: 0},
- ]
- # TODO: Investigate why currently solution [0] is preferred over [1].
- assert solve(eqs, exclude=[Vplus, s, C]) in [[{
- Vminus: Vplus,
- V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
- R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
- Rf: Ri*(Vout - Vplus)/Vplus,
- }, {
- Vminus: Vplus,
- V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
- R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
- Rf: Ri*(Vout - Vplus)/Vplus,
- }], [{
- Vminus: Vplus,
- Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
- Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
- R: Vplus/(C*s*(V1 - 2*Vplus)),
- }]]
- def test_high_order_roots():
- s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
- assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
- def test_minsolve_linear_system():
- pqt = {"quick": True, "particular": True}
- pqf = {"quick": False, "particular": True}
- assert solve([x + y - 5, 2*x - y - 1], **pqt) == {x: 2, y: 3}
- assert solve([x + y - 5, 2*x - y - 1], **pqf) == {x: 2, y: 3}
- def count(dic):
- return len([x for x in dic.values() if x == 0])
- assert count(solve([x + y + z, y + z + a + t], **pqt)) == 3
- assert count(solve([x + y + z, y + z + a + t], **pqf)) == 3
- assert count(solve([x + y + z, y + z + a], **pqt)) == 1
- assert count(solve([x + y + z, y + z + a], **pqf)) == 2
- # issue 22718
- A = Matrix([
- [ 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0],
- [ 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, -1, 0, 0],
- [-1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 1],
- [ 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, -1, 0, -1, 0],
- [-1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1],
- [-1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1],
- [ 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, -1, -1, 0],
- [ 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1],
- [ 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1],
- [ 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1],
- [ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
- [ 0, 0, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0]])
- v = Matrix(symbols("v:14", integer=True))
- B = Matrix([[2], [-2], [0], [0], [0], [0], [0], [0], [0],
- [0], [0], [0]])
- eqs = A@v-B
- assert solve(eqs) == []
- assert solve(eqs, particular=True) == [] # assumption violated
- assert all(v for v in solve([x + y + z, y + z + a]).values())
- for _q in (True, False):
- assert not all(v for v in solve(
- [x + y + z, y + z + a], quick=_q,
- particular=True).values())
- # raise error if quick used w/o particular=True
- raises(ValueError, lambda: solve([x + 1], quick=_q))
- raises(ValueError, lambda: solve([x + 1], quick=_q, particular=False))
- # and give a good error message if someone tries to use
- # particular with a single equation
- raises(ValueError, lambda: solve(x + 1, particular=True))
- def test_real_roots():
- # cf. issue 6650
- x = Symbol('x', real=True)
- assert len(solve(x**5 + x**3 + 1)) == 1
- def test_issue_6528():
- eqs = [
- 327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
- 895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
- # two expressions encountered are > 1400 ops long so if this hangs
- # it is likely because simplification is being done
- assert len(solve(eqs, y, x, check=False)) == 4
- def test_overdetermined():
- x = symbols('x', real=True)
- eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
- assert solve(eqs, x) == [(S.Half,)]
- assert solve(eqs, x, manual=True) == [(S.Half,)]
- assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
- def test_issue_6605():
- x = symbols('x')
- assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
- # while the first one passed, this one failed
- x = symbols('x', real=True)
- assert solve(5**(x/2) - 2**(x/3)) == [0]
- b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
- assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
- def test__ispow():
- assert _ispow(x**2)
- assert not _ispow(x)
- assert not _ispow(True)
- def test_issue_6644():
- eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
- 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
- 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
- sol = solve(eq, q, simplify=False, check=False)
- assert len(sol) == 5
- def test_issue_6752():
- assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
- assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
- def test_issue_6792():
- assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
- -1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
- CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
- CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
- def test_issues_6819_6820_6821_6248_8692():
- # issue 6821
- x, y = symbols('x y', real=True)
- assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
- assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)]
- assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)}
- # issue 8692
- assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
- Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half]
- # issue 7145
- assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
- x = symbols('x')
- assert solve([re(x) - 1, im(x) - 2], x) == [
- {re(x): 1, x: 1 + 2*I, im(x): 2}]
- # check for 'dict' handling of solution
- eq = sqrt(re(x)**2 + im(x)**2) - 3
- assert solve(eq) == solve(eq, x)
- i = symbols('i', imaginary=True)
- assert solve(abs(i) - 3) == [-3*I, 3*I]
- raises(NotImplementedError, lambda: solve(abs(x) - 3))
- w = symbols('w', integer=True)
- assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
- x, y = symbols('x y', real=True)
- assert solve(x + y*I + 3) == {y: 0, x: -3}
- # issue 2642
- assert solve(x*(1 + I)) == [0]
- x, y = symbols('x y', imaginary=True)
- assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
- x = symbols('x', real=True)
- assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
- # issue 6248
- f = Function('f')
- assert solve(f(x + 1) - f(2*x - 1)) == [2]
- assert solve(log(x + 1) - log(2*x - 1)) == [2]
- x = symbols('x')
- assert solve(2**x + 4**x) == [I*pi/log(2)]
- def test_issue_17638():
- assert solve(((2-exp(2*x))*exp(x))/(exp(2*x)+2)**2 > 0, x) == (-oo < x) & (x < log(2)/2)
- assert solve(((2-exp(2*x)+2)*exp(x+2))/(exp(x)+2)**2 > 0, x) == (-oo < x) & (x < log(4)/2)
- assert solve((exp(x)+2+x**2)*exp(2*x+2)/(exp(x)+2)**2 > 0, x) == (-oo < x) & (x < oo)
- def test_issue_14607():
- # issue 14607
- s, tau_c, tau_1, tau_2, phi, K = symbols(
- 's, tau_c, tau_1, tau_2, phi, K')
- target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
- K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
- positive=True, nonzero=True)
- PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
- eq = (target - PID).together()
- eq *= denom(eq).simplify()
- eq = Poly(eq, s)
- c = eq.coeffs()
- vars = [K_C, tau_I, tau_D]
- s = solve(c, vars, dict=True)
- assert len(s) == 1
- knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
- tau_I: tau_1 + tau_2,
- tau_D: tau_1*tau_2/(tau_1 + tau_2)}
- for var in vars:
- assert s[0][var].simplify() == knownsolution[var].simplify()
- def test_lambert_multivariate():
- from sympy.abc import x, y
- assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)}
- assert _lambert(x, x) == []
- assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
- assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
- [LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
- assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
- [LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
- eq = (x*exp(x) - 3).subs(x, x*exp(x))
- assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
- # coverage test
- raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
- ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478...
- assert solve(x**3 - 3**x, x) == ans
- assert set(solve(3*log(x) - x*log(3))) == set(ans)
- assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
- @XFAIL
- def test_other_lambert():
- assert solve(3*sin(x) - x*sin(3), x) == [3]
- assert set(solve(x**a - a**x), x) == {
- a, -a*LambertW(-log(a)/a)/log(a)}
- @slow
- def test_lambert_bivariate():
- # tests passing current implementation
- assert solve((x**2 + x)*exp(x**2 + x) - 1) == [
- Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2,
- Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2]
- assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [
- Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2,
- Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2]
- assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
- assert solve((a/x + exp(x/2)).diff(x), x) == \
- [4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)]
- assert solve((1/x + exp(x/2)).diff(x), x) == \
- [4*LambertW(-sqrt(2)/4),
- 4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21
- 4*LambertW(-sqrt(2)/4, -1)]
- assert solve(x*log(x) + 3*x + 1, x) == \
- [exp(-3 + LambertW(-exp(3)))]
- assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
- assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
- ans = solve(3*x + 5 + 2**(-5*x + 3), x)
- assert len(ans) == 1 and ans[0].expand() == \
- Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
- assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
- [Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
- assert solve((log(x) + x).subs(x, x**2 + 1)) == [
- -I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
- # check collection
- ax = a**(3*x + 5)
- ans = solve(3*log(ax) + b*log(ax) + ax, x)
- x0 = 1/log(a)
- x1 = sqrt(3)*I
- x2 = b + 3
- x3 = x2*LambertW(1/x2)/a**5
- x4 = x3**Rational(1, 3)/2
- assert ans == [
- x0*log(x4*(-x1 - 1)),
- x0*log(x4*(x1 - 1)),
- x0*log(x3)/3]
- x1 = LambertW(Rational(1, 3))
- x2 = a**(-5)
- x3 = -3**Rational(1, 3)
- x4 = 3**Rational(5, 6)*I
- x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2
- ans = solve(3*log(ax) + ax, x)
- assert ans == [
- x0*log(3*x1*x2)/3,
- x0*log(x5*(x3 - x4)),
- x0*log(x5*(x3 + x4))]
- # coverage
- p = symbols('p', positive=True)
- eq = 4*2**(2*p + 3) - 2*p - 3
- assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
- Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))]
- assert set(solve(3**cos(x) - cos(x)**3)) == {
- acos(3), acos(-3*LambertW(-log(3)/3)/log(3))}
- # should give only one solution after using `uniq`
- assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [
- exp(-z + LambertW(2*z**4*exp(2*z))/2)/z]
- # cases when p != S.One
- # issue 4271
- ans = solve((a/x + exp(x/2)).diff(x, 2), x)
- x0 = (-a)**Rational(1, 3)
- x1 = sqrt(3)*I
- x2 = x0/6
- assert ans == [
- 6*LambertW(x0/3),
- 6*LambertW(x2*(-x1 - 1)),
- 6*LambertW(x2*(x1 - 1))]
- assert solve((1/x + exp(x/2)).diff(x, 2), x) == \
- [6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \
- 6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)]
- assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \
- [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
- # this is slow but not exceedingly slow
- assert solve((x**3)**(x/2) + pi/2, x) == [
- exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))]
- # issue 23253
- assert solve((1/log(sqrt(x) + 2)**2 - 1/x)) == [
- (LambertW(-exp(-2), -1) + 2)**2]
- assert solve((1/log(1/sqrt(x) + 2)**2 - x)) == [
- (LambertW(-exp(-2), -1) + 2)**-2]
- assert solve((1/log(x**2 + 2)**2 - x**-4)) == [
- -I*sqrt(2 - LambertW(exp(2))),
- -I*sqrt(LambertW(-exp(-2)) + 2),
- sqrt(-2 - LambertW(-exp(-2))),
- sqrt(-2 + LambertW(exp(2))),
- -sqrt(-2 - LambertW(-exp(-2), -1)),
- sqrt(-2 - LambertW(-exp(-2), -1))]
- def test_rewrite_trig():
- assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
- assert solve(sin(x) + sec(x)) == [
- -2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
- 2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
- + sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
- sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
- assert solve(sinh(x) + tanh(x)) == [0, I*pi]
- # issue 6157
- assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)]
- @XFAIL
- def test_rewrite_trigh():
- # if this import passes then the test below should also pass
- from sympy.functions.elementary.hyperbolic import sech
- assert solve(sinh(x) + sech(x)) == [
- 2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
- 2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
- 2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
- 2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
- def test_uselogcombine():
- eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
- assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
- assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
- [-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
- -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2],
- [-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
- -3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
- ]
- assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
- def test_atan2():
- assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
- def test_errorinverses():
- assert solve(erf(x) - y, x) == [erfinv(y)]
- assert solve(erfinv(x) - y, x) == [erf(y)]
- assert solve(erfc(x) - y, x) == [erfcinv(y)]
- assert solve(erfcinv(x) - y, x) == [erfc(y)]
- def test_issue_2725():
- R = Symbol('R')
- eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
- sol = solve(eq, R, set=True)[1]
- assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
- sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
- sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) +
- sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)}
- def test_issue_5114_6611():
- # See that it doesn't hang; this solves in about 2 seconds.
- # Also check that the solution is relatively small.
- # Note: the system in issue 6611 solves in about 5 seconds and has
- # an op-count of 138336 (with simplify=False).
- b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
- eqs = Matrix([
- [b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
- [-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
- [-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
- v = Matrix([f, h, k, n, b, c])
- ans = solve(list(eqs), list(v), simplify=False)
- # If time is taken to simplify then then 2617 below becomes
- # 1168 and the time is about 50 seconds instead of 2.
- assert sum([s.count_ops() for s in ans.values()]) <= 3270
- def test_det_quick():
- m = Matrix(3, 3, symbols('a:9'))
- assert m.det() == det_quick(m) # calls det_perm
- m[0, 0] = 1
- assert m.det() == det_quick(m) # calls det_minor
- m = Matrix(3, 3, list(range(9)))
- assert m.det() == det_quick(m) # defaults to .det()
- # make sure they work with Sparse
- s = SparseMatrix(2, 2, (1, 2, 1, 4))
- assert det_perm(s) == det_minor(s) == s.det()
- def test_real_imag_splitting():
- a, b = symbols('a b', real=True)
- assert solve(sqrt(a**2 + b**2) - 3, a) == \
- [-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
- a, b = symbols('a b', imaginary=True)
- assert solve(sqrt(a**2 + b**2) - 3, a) == []
- def test_issue_7110():
- y = -2*x**3 + 4*x**2 - 2*x + 5
- assert any(ask(Q.real(i)) for i in solve(y))
- def test_units():
- assert solve(1/x - 1/(2*cm)) == [2*cm]
- def test_issue_7547():
- A, B, V = symbols('A,B,V')
- eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
- eq2 = Eq(B, 1.36*10**8*(V - 39))
- eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
- sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
- assert str(sol) == str(Matrix(
- [['4442890172.68209'],
- ['4289299466.1432'],
- ['70.5389666628177']]))
- def test_issue_7895():
- r = symbols('r', real=True)
- assert solve(sqrt(r) - 2) == [4]
- def test_issue_2777():
- # the equations represent two circles
- x, y = symbols('x y', real=True)
- e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
- a, b = Rational(191, 20), 3*sqrt(391)/20
- ans = [(a, -b), (a, b)]
- assert solve((e1, e2), (x, y)) == ans
- assert solve((e1, e2/(x - a)), (x, y)) == []
- # make the 2nd circle's radius be -3
- e2 += 6
- assert solve((e1, e2), (x, y)) == []
- assert solve((e1, e2), (x, y), check=False) == ans
- def test_issue_7322():
- number = 5.62527e-35
- assert solve(x - number, x)[0] == number
- def test_nsolve():
- raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
- raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
- raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
- @slow
- def test_high_order_multivariate():
- assert len(solve(a*x**3 - x + 1, x)) == 3
- assert len(solve(a*x**4 - x + 1, x)) == 4
- assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
- raises(NotImplementedError, lambda:
- solve(a*x**5 - x + 1, x, incomplete=False))
- # result checking must always consider the denominator and CRootOf
- # must be checked, too
- d = x**5 - x + 1
- assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
- d = x - 1
- assert solve(d*(2 + 1/d)) == [S.Half]
- def test_base_0_exp_0():
- assert solve(0**x - 1) == [0]
- assert solve(0**(x - 2) - 1) == [2]
- assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
- [0, 1]
- def test__simple_dens():
- assert _simple_dens(1/x**0, [x]) == set()
- assert _simple_dens(1/x**y, [x]) == {x**y}
- assert _simple_dens(1/root(x, 3), [x]) == {x}
- def test_issue_8755():
- # This tests two things: that if full unrad is attempted and fails
- # the solution should still be found; also it tests the use of
- # keyword `composite`.
- assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
- assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
- 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
- @slow
- def test_issue_8828():
- x1 = 0
- y1 = -620
- r1 = 920
- x2 = 126
- y2 = 276
- x3 = 51
- y3 = 205
- r3 = 104
- v = x, y, z
- f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
- f2 = (x - x2)**2 + (y - y2)**2 - z**2
- f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
- F = f1,f2,f3
- g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
- g2 = f2
- g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
- G = g1,g2,g3
- A = solve(F, v)
- B = solve(G, v)
- C = solve(G, v, manual=True)
- p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]]
- assert p == q == r
- @slow
- def test_issue_2840_8155():
- assert solve(sin(3*x) + sin(6*x)) == [
- 0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3),
- pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9),
- pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3),
- pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi,
- -2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)),
- -2*I*log(-sin(pi/18) - I*cos(pi/18)),
- -2*I*log(-sin(pi/18) + I*cos(pi/18)),
- -2*I*log(sin(pi/18) - I*cos(pi/18)),
- -2*I*log(sin(pi/18) + I*cos(pi/18))]
- assert solve(2*sin(x) - 2*sin(2*x)) == [
- 0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)]
- def test_issue_9567():
- assert solve(1 + 1/(x - 1)) == [0]
- def test_issue_11538():
- assert solve(x + E) == [-E]
- assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
- assert solve(x**3 + 2*E) == [
- -cbrt(2 * E),
- cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
- cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
- assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
- assert solve([x**2 + 4, y + E], x, y) == [
- (-2*I, -E), (2*I, -E)]
- e1 = x - y**3 + 4
- e2 = x + y + 4 + 4 * E
- assert len(solve([e1, e2], x, y)) == 3
- @slow
- def test_issue_12114():
- a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
- terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
- g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
- sol = solve(terms, [a, b, c, d, e, f, g], dict=True)
- s = sqrt(-f**2 - 1)
- s2 = sqrt(2 - f**2)
- s3 = sqrt(6 - 3*f**2)
- s4 = sqrt(3)*f
- s5 = sqrt(3)*s2
- assert sol == [
- {a: -s, b: -s, c: -s, d: f, e: f, g: -1},
- {a: s, b: s, c: s, d: f, e: f, g: -1},
- {a: -s4/2 - s2/2, b: s4/2 - s2/2, c: s2,
- d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2},
- {a: -s4/2 + s2/2, b: s4/2 + s2/2, c: -s2,
- d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2},
- {a: s4/2 - s2/2, b: -s4/2 - s2/2, c: s2,
- d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2},
- {a: s4/2 + s2/2, b: -s4/2 + s2/2, c: -s2,
- d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}]
- def test_inf():
- assert solve(1 - oo*x) == []
- assert solve(oo*x, x) == []
- assert solve(oo*x - oo, x) == []
- def test_issue_12448():
- f = Function('f')
- fun = [f(i) for i in range(15)]
- sym = symbols('x:15')
- reps = dict(zip(fun, sym))
- (x, y, z), c = sym[:3], sym[3:]
- ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
- for i in range(3)], (x, y, z))
- (x, y, z), c = fun[:3], fun[3:]
- sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
- for i in range(3)], (x, y, z))
- assert sfun[fun[0]].xreplace(reps).count_ops() == \
- ssym[sym[0]].count_ops()
- def test_denoms():
- assert denoms(x/2 + 1/y) == {2, y}
- assert denoms(x/2 + 1/y, y) == {y}
- assert denoms(x/2 + 1/y, [y]) == {y}
- assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y}
- assert denoms(1/x + 1/y + 1/z, x, y) == {x, y}
- assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y}
- def test_issue_12476():
- x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
- eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
- x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
- x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
- x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
- -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
- x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
- -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
- -x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
- -x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
- -x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
- x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
- sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1},
- {x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1},
- {x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1},
- {x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
- {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
- {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
- assert solve(eqns) == sols
- def test_issue_13849():
- t = symbols('t')
- assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
- def test_issue_14860():
- from sympy.physics.units import newton, kilo
- assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
- def test_issue_14721():
- k, h, a, b = symbols(':4')
- assert solve([
- -1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
- -1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
- h, k + 2], h, k, a, b) == [
- (0, -2, -b*sqrt(1/(b**2 - 9)), b),
- (0, -2, b*sqrt(1/(b**2 - 9)), b)]
- assert solve([
- h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
- (a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
- assert solve((a + b**2 - 1, a + b**2 - 2)) == []
- def test_issue_14779():
- x = symbols('x', real=True)
- assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
- + 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
- def test_issue_15307():
- assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
- [{x: -3, y: 2}, {x: 2, y: 2}]
- assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
- {x: 2, y: 2}
- assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
- {x: -1, y: 2}
- eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
- eq2 = Eq(-2*x + 8, 2*x - 40)
- assert solve([eq1, eq2]) == {x:12, y:75}
- def test_issue_15415():
- assert solve(x - 3, x) == [3]
- assert solve([x - 3], x) == {x:3}
- assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
- assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
- assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
- @slow
- def test_issue_15731():
- # f(x)**g(x)=c
- assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
- assert solve((x)**(x + 4) - 4) == [-2]
- assert solve((-x)**(-x + 4) - 4) == [2]
- assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
- assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
- assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
- assert solve((x**2 + 1)**x - 25) == [2]
- assert solve(x**(2/x) - 2) == [2, 4]
- assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
- assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)]
- # a**g(x)=c
- assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)]
- assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half]
- assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
- (3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
- assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
- assert solve(I**x + 1) == [2]
- assert solve((1 + I)**x - 2*I) == [2]
- assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)]
- # bases of both sides are equal
- b = Symbol('b')
- assert solve(b**x - b**2, x) == [2]
- assert solve(b**x - 1/b, x) == [-1]
- assert solve(b**x - b, x) == [1]
- b = Symbol('b', positive=True)
- assert solve(b**x - b**2, x) == [2]
- assert solve(b**x - 1/b, x) == [-1]
- def test_issue_10933():
- assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
- assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
- def test_Abs_handling():
- x = symbols('x', real=True)
- assert solve(abs(x/y), x) == [0]
- def test_issue_7982():
- x = Symbol('x')
- # Test that no exception happens
- assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false
- # From #8040
- assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false
- def test_issue_14645():
- x, y = symbols('x y')
- assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)]
- def test_issue_12024():
- x, y = symbols('x y')
- assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \
- [{y: Piecewise((0.0, x < 0.1), (x, True))}]
- def test_issue_17452():
- assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)),
- sqrt(log(pi) + I*pi)/sqrt(log(7))]
- assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))]
- def test_issue_17799():
- assert solve(-erf(x**(S(1)/3))**pi + I, x) == []
- def test_issue_17650():
- x = Symbol('x', real=True)
- assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)]
- def test_issue_17882():
- eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3))
- assert unrad(eq) is None
- def test_issue_17949():
- assert solve(exp(+x+x**2), x) == []
- assert solve(exp(-x+x**2), x) == []
- assert solve(exp(+x-x**2), x) == []
- assert solve(exp(-x-x**2), x) == []
- def test_issue_10993():
- assert solve(Eq(binomial(x, 2), 3)) == [-2, 3]
- assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1]
- assert solve(Eq(binomial(x, 2), 0)) == [0, 1]
- assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)]
- assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)]
- assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3]
- def test_issue_11553():
- eq1 = x + y + 1
- eq2 = x + GoldenRatio
- assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio}
- eq3 = x + 2 + TribonacciConstant
- assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant}
- def test_issue_19113_19102():
- t = S(1)/3
- solve(cos(x)**5-sin(x)**5)
- assert solve(4*cos(x)**3 - 2*sin(x)**3) == [
- atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2),
- -atan(2**(t)*(1 + sqrt(3)*I)/2)]
- h = S.Half
- assert solve(cos(x)**2 + sin(x)) == [
- 2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2),
- -2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2),
- -2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2),
- -2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)]
- assert solve(3*cos(x) - sin(x)) == [atan(3)]
- def test_issue_19509():
- a = S(3)/4
- b = S(5)/8
- c = sqrt(5)/8
- d = sqrt(5)/4
- assert solve(1/(x -1)**5 - 1) == [2,
- -d + a - sqrt(-b + c),
- -d + a + sqrt(-b + c),
- d + a - sqrt(-b - c),
- d + a + sqrt(-b - c)]
- def test_issue_20747():
- THT, HT, DBH, dib, c0, c1, c2, c3, c4 = symbols('THT HT DBH dib c0 c1 c2 c3 c4')
- f = DBH*c3 + THT*c4 + c2
- rhs = 1 - ((HT - 1)/(THT - 1))**c1*(1 - exp(c0/f))
- eq = dib - DBH*(c0 - f*log(rhs))
- term = ((1 - exp((DBH*c0 - dib)/(DBH*(DBH*c3 + THT*c4 + c2))))
- / (1 - exp(c0/(DBH*c3 + THT*c4 + c2))))
- sol = [THT*term**(1/c1) - term**(1/c1) + 1]
- assert solve(eq, HT) == sol
- def test_issue_20902():
- f = (t / ((1 + t) ** 2))
- assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3)
- assert solve(f.subs({t: 3 * x + 3}).diff(x) > 0, x) == (S(-4)/3 < x) & (x < S(-2)/3)
- assert solve(f.subs({t: 3 * x + 4}).diff(x) > 0, x) == (S(-5)/3 < x) & (x < S(-1))
- assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3)
- def test_issue_21034():
- a = symbols('a', real=True)
- system = [x - cosh(cos(4)), y - sinh(cos(a)), z - tanh(x)]
- # constants inside hyperbolic functions should not be rewritten in terms of exp
- assert solve(system, x, y, z) == [(cosh(cos(4)), sinh(cos(a)), tanh(cosh(cos(4))))]
- # but if the variable of interest is present in a hyperbolic function,
- # then it should be rewritten in terms of exp and solved further
- newsystem = [(exp(x) - exp(-x)) - tanh(x)*(exp(x) + exp(-x)) + x - 5]
- assert solve(newsystem, x) == {x: 5}
- def test_issue_4886():
- z = a*sqrt(R**2*a**2 + R**2*b**2 - c**2)/(a**2 + b**2)
- t = b*c/(a**2 + b**2)
- sol = [((b*(t - z) - c)/(-a), t - z), ((b*(t + z) - c)/(-a), t + z)]
- assert solve([x**2 + y**2 - R**2, a*x + b*y - c], x, y) == sol
- def test_issue_6819():
- a, b, c, d = symbols('a b c d', positive=True)
- assert solve(a*b**x - c*d**x, x) == [log(c/a)/log(b/d)]
- def test_issue_17454():
- x = Symbol('x')
- assert solve((1 - x - I)**4, x) == [1 - I]
- def test_issue_21852():
- solution = [21 - 21*sqrt(2)/2]
- assert solve(2*x + sqrt(2*x**2) - 21) == solution
- def test_issue_21942():
- eq = -d + (a*c**(1 - e) + b**(1 - e)*(1 - a))**(1/(1 - e))
- sol = solve(eq, c, simplify=False, check=False)
- assert sol == [((a*b**(1 - e) - b**(1 - e) +
- d**(1 - e))/a)**(1/(1 - e))]
- def test_solver_flags():
- root = solve(x**5 + x**2 - x - 1, cubics=False)
- rad = solve(x**5 + x**2 - x - 1, cubics=True)
- assert root != rad
- def test_issue_22768():
- eq = 2*x**3 - 16*(y - 1)**6*z**3
- assert solve(eq.expand(), x, simplify=False
- ) == [2*z*(y - 1)**2, z*(-1 + sqrt(3)*I)*(y - 1)**2,
- -z*(1 + sqrt(3)*I)*(y - 1)**2]
- def test_issue_22717():
- assert solve((-y**2 + log(y**2/x) + 2, -2*x*y + 2*x/y)) == [
- {y: -1, x: E}, {y: 1, x: E}]
- def test_issue_10169():
- eq = S(-8*a - x**5*(a + b + c + e) - x**4*(4*a - 2**Rational(3,4)*c + 4*c +
- d + 2**Rational(3,4)*e + 4*e + k) - x**3*(-4*2**Rational(3,4)*c + sqrt(2)*c -
- 2**Rational(3,4)*d + 4*d + sqrt(2)*e + 4*2**Rational(3,4)*e + 2**Rational(3,4)*k + 4*k) -
- x**2*(4*sqrt(2)*c - 4*2**Rational(3,4)*d + sqrt(2)*d + 4*sqrt(2)*e +
- sqrt(2)*k + 4*2**Rational(3,4)*k) - x*(2*a + 2*b + 4*sqrt(2)*d +
- 4*sqrt(2)*k) + 5)
- assert solve_undetermined_coeffs(eq, [a, b, c, d, e, k], x) == {
- a: Rational(5,8),
- b: Rational(-5,1032),
- c: Rational(-40,129) - 5*2**Rational(3,4)/129 + 5*2**Rational(1,4)/1032,
- d: -20*2**Rational(3,4)/129 - 10*sqrt(2)/129 - 5*2**Rational(1,4)/258,
- e: Rational(-40,129) - 5*2**Rational(1,4)/1032 + 5*2**Rational(3,4)/129,
- k: -10*sqrt(2)/129 + 5*2**Rational(1,4)/258 + 20*2**Rational(3,4)/129
- }
- def test_solve_undetermined_coeffs_issue_23927():
- A, B, r, phi = symbols('A, B, r, phi')
- eq = Eq(A*sin(t) + B*cos(t), r*sin(t - phi)).rewrite(Add).expand(trig=True)
- soln = solve_undetermined_coeffs(eq, (r, phi), t)
- assert soln == [{
- phi: 2*atan((A - sqrt(A**2 + B**2))/B),
- r: (-A**2 + A*sqrt(A**2 + B**2) - B**2)/(A - sqrt(A**2 + B**2))
- }, {
- phi: 2*atan((A + sqrt(A**2 + B**2))/B),
- r: (A**2 + A*sqrt(A**2 + B**2) + B**2)/(A + sqrt(A**2 + B**2))/-1
- }]
|