123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- """Tests for solvers of systems of polynomial equations. """
- from sympy.core.numbers import (I, Integer, Rational)
- from sympy.core.singleton import S
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.polys.domains.rationalfield import QQ
- from sympy.polys.polyerrors import UnsolvableFactorError
- from sympy.polys.polyoptions import Options
- from sympy.polys.polytools import Poly
- from sympy.solvers.solvers import solve
- from sympy.utilities.iterables import flatten
- from sympy.abc import x, y, z
- from sympy.polys import PolynomialError
- from sympy.solvers.polysys import (solve_poly_system,
- solve_triangulated,
- solve_biquadratic, SolveFailed,
- solve_generic)
- from sympy.polys.polytools import parallel_poly_from_expr
- from sympy.testing.pytest import raises
- def test_solve_poly_system():
- assert solve_poly_system([x - 1], x) == [(S.One,)]
- assert solve_poly_system([y - x, y - x - 1], x, y) is None
- assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
- assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
- [(Rational(3, 2), Integer(2), Integer(10))]
- assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
- [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
- assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
- [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
- f_1 = x**2 + y + z - 1
- f_2 = x + y**2 + z - 1
- f_3 = x + y + z**2 - 1
- a, b = sqrt(2) - 1, -sqrt(2) - 1
- assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
- [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
- solution = [(1, -1), (1, 1)]
- assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
- assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
- assert solve_poly_system([x**2 - y**2, x - 1]) == solution
- assert solve_poly_system(
- [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
- raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
- raises(NotImplementedError, lambda: solve_poly_system(
- [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
- raises(PolynomialError, lambda: solve_poly_system([1/x], x))
- raises(NotImplementedError, lambda: solve_poly_system(
- [x-1,], (x, y)))
- raises(NotImplementedError, lambda: solve_poly_system(
- [y-1,], (x, y)))
- # solve_poly_system should ideally construct solutions using
- # CRootOf for the following four tests
- assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
- raises(UnsolvableFactorError, lambda: solve_poly_system(
- [x**5 - x + 1], [x], strict=True))
- assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
- strict=False) == [(1, -1), (1, 1)]
- raises(UnsolvableFactorError,
- lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
- [x, y], strict=True))
- def test_solve_generic():
- NewOption = Options((x, y), {'domain': 'ZZ'})
- assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
- [(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
- (sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
- (-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
- (sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]
- # solve_generic should ideally construct solutions using
- # CRootOf for the following two tests
- assert solve_generic(
- [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
- [(Rational(1, 2), 1)]
- raises(UnsolvableFactorError, lambda: solve_generic(
- [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))
- def test_solve_biquadratic():
- x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
- f_1 = (x - 1)**2 + (y - 1)**2 - r**2
- f_2 = (x - 2)**2 + (y - 2)**2 - r**2
- s = sqrt(2*r**2 - 1)
- a = (3 - s)/2
- b = (3 + s)/2
- assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
- f_1 = (x - 1)**2 + (y - 2)**2 - r**2
- f_2 = (x - 1)**2 + (y - 1)**2 - r**2
- assert solve_poly_system([f_1, f_2], x, y) == \
- [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
- (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
- query = lambda expr: expr.is_Pow and expr.exp is S.Half
- f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
- f_2 = (x - x1)**2 + (y - 1)**2 - r**2
- result = solve_poly_system([f_1, f_2], x, y)
- assert len(result) == 2 and all(len(r) == 2 for r in result)
- assert all(r.count(query) == 1 for r in flatten(result))
- f_1 = (x - x0)**2 + (y - y0)**2 - r**2
- f_2 = (x - x1)**2 + (y - y1)**2 - r**2
- result = solve_poly_system([f_1, f_2], x, y)
- assert len(result) == 2 and all(len(r) == 2 for r in result)
- assert all(len(r.find(query)) == 1 for r in flatten(result))
- s1 = (x*y - y, x**2 - x)
- assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
- s2 = (x*y - x, y**2 - y)
- assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
- gens = (x, y)
- for seq in (s1, s2):
- (f, g), opt = parallel_poly_from_expr(seq, *gens)
- raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
- seq = (x**2 + y**2 - 2, y**2 - 1)
- (f, g), opt = parallel_poly_from_expr(seq, *gens)
- assert solve_biquadratic(f, g, opt) == [
- (-1, -1), (-1, 1), (1, -1), (1, 1)]
- ans = [(0, -1), (0, 1)]
- seq = (x**2 + y**2 - 1, y**2 - 1)
- (f, g), opt = parallel_poly_from_expr(seq, *gens)
- assert solve_biquadratic(f, g, opt) == ans
- seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
- (f, g), opt = parallel_poly_from_expr(seq, *gens)
- assert solve_biquadratic(f, g, opt) == ans
- def test_solve_triangulated():
- f_1 = x**2 + y + z - 1
- f_2 = x + y**2 + z - 1
- f_3 = x + y + z**2 - 1
- a, b = sqrt(2) - 1, -sqrt(2) - 1
- assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
- [(0, 0, 1), (0, 1, 0), (1, 0, 0)]
- dom = QQ.algebraic_field(sqrt(2))
- assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
- [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
- def test_solve_issue_3686():
- roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
- assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
- roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
- # TODO: does this really have to be so complicated?!
- assert len(roots) == 2
- assert roots[0][0] == 0
- assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
- assert roots[1][0] == 0
- assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
|