test_inequalities.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. """Tests for tools for solving inequalities and systems of inequalities. """
  2. from sympy.concrete.summations import Sum
  3. from sympy.core.function import Function
  4. from sympy.core.numbers import (I, Rational, oo, pi)
  5. from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
  6. from sympy.core.singleton import S
  7. from sympy.core.symbol import (Dummy, Symbol)
  8. from sympy.functions.elementary.complexes import Abs
  9. from sympy.functions.elementary.exponential import (exp, log)
  10. from sympy.functions.elementary.miscellaneous import (root, sqrt)
  11. from sympy.functions.elementary.piecewise import Piecewise
  12. from sympy.functions.elementary.trigonometric import (cos, sin, tan)
  13. from sympy.integrals.integrals import Integral
  14. from sympy.logic.boolalg import (And, Or)
  15. from sympy.polys.polytools import (Poly, PurePoly)
  16. from sympy.sets.sets import (FiniteSet, Interval, Union)
  17. from sympy.solvers.inequalities import (reduce_inequalities,
  18. solve_poly_inequality as psolve,
  19. reduce_rational_inequalities,
  20. solve_univariate_inequality as isolve,
  21. reduce_abs_inequality,
  22. _solve_inequality)
  23. from sympy.polys.rootoftools import rootof
  24. from sympy.solvers.solvers import solve
  25. from sympy.solvers.solveset import solveset
  26. from sympy.abc import x, y
  27. from sympy.core.mod import Mod
  28. from sympy.testing.pytest import raises, XFAIL
  29. inf = oo.evalf()
  30. def test_solve_poly_inequality():
  31. assert psolve(Poly(0, x), '==') == [S.Reals]
  32. assert psolve(Poly(1, x), '==') == [S.EmptySet]
  33. assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
  34. def test_reduce_poly_inequalities_real_interval():
  35. assert reduce_rational_inequalities(
  36. [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
  37. assert reduce_rational_inequalities(
  38. [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
  39. assert reduce_rational_inequalities(
  40. [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
  41. assert reduce_rational_inequalities(
  42. [[Ge(x**2, 0)]], x, relational=False) == \
  43. S.Reals if x.is_real else Interval(-oo, oo)
  44. assert reduce_rational_inequalities(
  45. [[Gt(x**2, 0)]], x, relational=False) == \
  46. FiniteSet(0).complement(S.Reals)
  47. assert reduce_rational_inequalities(
  48. [[Ne(x**2, 0)]], x, relational=False) == \
  49. FiniteSet(0).complement(S.Reals)
  50. assert reduce_rational_inequalities(
  51. [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
  52. assert reduce_rational_inequalities(
  53. [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
  54. assert reduce_rational_inequalities(
  55. [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
  56. assert reduce_rational_inequalities(
  57. [[Ge(x**2, 1)]], x, relational=False) == \
  58. Union(Interval(-oo, -1), Interval(1, oo))
  59. assert reduce_rational_inequalities(
  60. [[Gt(x**2, 1)]], x, relational=False) == \
  61. Interval(-1, 1).complement(S.Reals)
  62. assert reduce_rational_inequalities(
  63. [[Ne(x**2, 1)]], x, relational=False) == \
  64. FiniteSet(-1, 1).complement(S.Reals)
  65. assert reduce_rational_inequalities([[Eq(
  66. x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
  67. assert reduce_rational_inequalities(
  68. [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
  69. assert reduce_rational_inequalities([[Lt(
  70. x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
  71. assert reduce_rational_inequalities(
  72. [[Ge(x**2, 1.0)]], x, relational=False) == \
  73. Union(Interval(-inf, -1.0), Interval(1.0, inf))
  74. assert reduce_rational_inequalities(
  75. [[Gt(x**2, 1.0)]], x, relational=False) == \
  76. Union(Interval(-inf, -1.0, right_open=True),
  77. Interval(1.0, inf, left_open=True))
  78. assert reduce_rational_inequalities([[Ne(
  79. x**2, 1.0)]], x, relational=False) == \
  80. FiniteSet(-1.0, 1.0).complement(S.Reals)
  81. s = sqrt(2)
  82. assert reduce_rational_inequalities([[Lt(
  83. x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
  84. assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
  85. x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
  86. assert reduce_rational_inequalities(
  87. [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
  88. ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
  89. assert reduce_rational_inequalities(
  90. [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
  91. ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
  92. assert reduce_rational_inequalities(
  93. [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
  94. ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
  95. assert reduce_rational_inequalities(
  96. [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
  97. ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
  98. assert reduce_rational_inequalities(
  99. [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
  100. ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
  101. Interval(1, s, True, True))
  102. assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
  103. def test_reduce_poly_inequalities_complex_relational():
  104. assert reduce_rational_inequalities(
  105. [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
  106. assert reduce_rational_inequalities(
  107. [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
  108. assert reduce_rational_inequalities(
  109. [[Lt(x**2, 0)]], x, relational=True) == False
  110. assert reduce_rational_inequalities(
  111. [[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
  112. assert reduce_rational_inequalities(
  113. [[Gt(x**2, 0)]], x, relational=True) == \
  114. And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
  115. assert reduce_rational_inequalities(
  116. [[Ne(x**2, 0)]], x, relational=True) == \
  117. And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
  118. for one in (S.One, S(1.0)):
  119. inf = one*oo
  120. assert reduce_rational_inequalities(
  121. [[Eq(x**2, one)]], x, relational=True) == \
  122. Or(Eq(x, -one), Eq(x, one))
  123. assert reduce_rational_inequalities(
  124. [[Le(x**2, one)]], x, relational=True) == \
  125. And(And(Le(-one, x), Le(x, one)))
  126. assert reduce_rational_inequalities(
  127. [[Lt(x**2, one)]], x, relational=True) == \
  128. And(And(Lt(-one, x), Lt(x, one)))
  129. assert reduce_rational_inequalities(
  130. [[Ge(x**2, one)]], x, relational=True) == \
  131. And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
  132. assert reduce_rational_inequalities(
  133. [[Gt(x**2, one)]], x, relational=True) == \
  134. And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
  135. assert reduce_rational_inequalities(
  136. [[Ne(x**2, one)]], x, relational=True) == \
  137. Or(And(Lt(-inf, x), Lt(x, -one)),
  138. And(Lt(-one, x), Lt(x, one)),
  139. And(Lt(one, x), Lt(x, inf)))
  140. def test_reduce_rational_inequalities_real_relational():
  141. assert reduce_rational_inequalities([], x) == False
  142. assert reduce_rational_inequalities(
  143. [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
  144. Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
  145. assert reduce_rational_inequalities(
  146. [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
  147. relational=False) == \
  148. Union(Interval.open(-5, 2), Interval.open(2, 3))
  149. assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
  150. relational=False) == \
  151. Interval.Ropen(-1, 5)
  152. assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
  153. relational=False) == \
  154. Union(Interval.open(-3, -1), Interval.open(1, oo))
  155. assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
  156. relational=False) == \
  157. Union(Interval.open(-4, 1), Interval.open(1, 4))
  158. assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
  159. relational=False) == \
  160. Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo))
  161. assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
  162. relational=False) == \
  163. Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
  164. # issue sympy/sympy#10237
  165. assert reduce_rational_inequalities(
  166. [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
  167. def test_reduce_abs_inequalities():
  168. e = abs(x - 5) < 3
  169. ans = And(Lt(2, x), Lt(x, 8))
  170. assert reduce_inequalities(e) == ans
  171. assert reduce_inequalities(e, x) == ans
  172. assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
  173. assert reduce_inequalities(
  174. abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
  175. And(Le(x, Rational(-11, 2)), Lt(-oo, x)))
  176. assert reduce_inequalities(abs(x - 4) + abs(
  177. 3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4))
  178. assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
  179. Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4))
  180. nr = Symbol('nr', extended_real=False)
  181. raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
  182. assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)
  183. def test_reduce_inequalities_general():
  184. assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
  185. assert reduce_inequalities(x + 1 > 0) == And(S.NegativeOne < x, x < oo)
  186. def test_reduce_inequalities_boolean():
  187. assert reduce_inequalities(
  188. [Eq(x**2, 0), True]) == Eq(x, 0)
  189. assert reduce_inequalities([Eq(x**2, 0), False]) == False
  190. assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196
  191. def test_reduce_inequalities_multivariate():
  192. assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
  193. Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
  194. Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))
  195. def test_reduce_inequalities_errors():
  196. raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
  197. raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))
  198. def test__solve_inequalities():
  199. assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
  200. assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
  201. assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
  202. assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
  203. def test_issue_6343():
  204. eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0
  205. assert reduce_inequalities(eq) == \
  206. And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x)
  207. def test_issue_8235():
  208. assert reduce_inequalities(x**2 - 1 < 0) == \
  209. And(S.NegativeOne < x, x < 1)
  210. assert reduce_inequalities(x**2 - 1 <= 0) == \
  211. And(S.NegativeOne <= x, x <= 1)
  212. assert reduce_inequalities(x**2 - 1 > 0) == \
  213. Or(And(-oo < x, x < -1), And(x < oo, S.One < x))
  214. assert reduce_inequalities(x**2 - 1 >= 0) == \
  215. Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo))
  216. eq = x**8 + x - 9 # we want CRootOf solns here
  217. sol = solve(eq >= 0)
  218. tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
  219. assert sol == tru
  220. # recast vanilla as real
  221. assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2)
  222. def test_issue_5526():
  223. assert reduce_inequalities(0 <=
  224. x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
  225. (x >= -Integral(y**2, (y, 1, 3)) + 1)
  226. f = Function('f')
  227. e = Sum(f(x), (x, 1, 3))
  228. assert reduce_inequalities(0 <= x + e + y**2, [x]) == \
  229. (x >= -y**2 - Sum(f(x), (x, 1, 3)))
  230. def test_solve_univariate_inequality():
  231. assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
  232. Interval(2, oo))
  233. assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
  234. Lt(-oo, x)))
  235. assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
  236. Union(Interval(1, 2), Interval(3, oo))
  237. assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
  238. Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
  239. assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
  240. Or(Eq(x, 0), Eq(x, 3))
  241. # issue 2785:
  242. assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
  243. Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True),
  244. Interval(S.Half + sqrt(5)/2, oo, True, True))
  245. # issue 2794:
  246. assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
  247. Interval(1, oo, True)
  248. #issue 13105
  249. assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
  250. assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
  251. assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
  252. raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))
  253. # numerical testing in valid() is needed
  254. assert isolve(x**7 - x - 2 > 0, x) == \
  255. And(rootof(x**7 - x - 2, 0) < x, x < oo)
  256. # handle numerator and denominator; although these would be handled as
  257. # rational inequalities, these test confirm that the right thing is done
  258. # when the domain is EX (e.g. when 2 is replaced with sqrt(2))
  259. assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
  260. den = ((x - 1)*(x - 2)).expand()
  261. assert isolve((x - 1)/den <= 0, x) == \
  262. (x > -oo) & (x < 2) & Ne(x, 1)
  263. n = Dummy('n')
  264. raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
  265. c1 = Dummy("c1", positive=True)
  266. raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
  267. n = Dummy('n', negative=True)
  268. assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
  269. assert isolve(n/c1 < 0, c1) == True
  270. assert isolve(n/c1 > 0, c1) == False
  271. zero = cos(1)**2 + sin(1)**2 - 1
  272. raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
  273. raises(NotImplementedError, lambda: isolve(
  274. x**2 < zero*I, x))
  275. raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
  276. raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
  277. raises(TypeError, lambda: isolve(x - I < 0, x))
  278. zero = x**2 + x - x*(x + 1)
  279. assert isolve(zero < 0, x, relational=False) is S.EmptySet
  280. assert isolve(zero <= 0, x, relational=False) is S.Reals
  281. # make sure iter_solutions gets a default value
  282. raises(NotImplementedError, lambda: isolve(
  283. Eq(cos(x)**2 + sin(x)**2, 1), x))
  284. def test_trig_inequalities():
  285. # all the inequalities are solved in a periodic interval.
  286. assert isolve(sin(x) < S.Half, x, relational=False) == \
  287. Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
  288. assert isolve(sin(x) > S.Half, x, relational=False) == \
  289. Interval(pi/6, pi*Rational(5, 6), True, True)
  290. assert isolve(cos(x) < S.Zero, x, relational=False) == \
  291. Interval(pi/2, pi*Rational(3, 2), True, True)
  292. assert isolve(cos(x) >= S.Zero, x, relational=False) == \
  293. Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
  294. assert isolve(tan(x) < S.One, x, relational=False) == \
  295. Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))
  296. assert isolve(sin(x) <= S.Zero, x, relational=False) == \
  297. Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))
  298. assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
  299. assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
  300. assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
  301. assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
  302. def test_issue_9954():
  303. assert isolve(x**2 >= 0, x, relational=False) == S.Reals
  304. assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
  305. assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
  306. assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)
  307. @XFAIL
  308. def test_slow_general_univariate():
  309. r = rootof(x**5 - x**2 + 1, 0)
  310. assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
  311. Or(And(0 < x, x < r**6), And(r**6 < x, x < oo))
  312. def test_issue_8545():
  313. eq = 1 - x - abs(1 - x)
  314. ans = And(Lt(1, x), Lt(x, oo))
  315. assert reduce_abs_inequality(eq, '<', x) == ans
  316. eq = 1 - x - sqrt((1 - x)**2)
  317. assert reduce_inequalities(eq < 0) == ans
  318. def test_issue_8974():
  319. assert isolve(-oo < x, x) == And(-oo < x, x < oo)
  320. assert isolve(oo > x, x) == And(-oo < x, x < oo)
  321. def test_issue_10198():
  322. assert reduce_inequalities(
  323. -1 + 1/abs(1/x - 1) < 0) == (x > -oo) & (x < S(1)/2) & Ne(x, 0)
  324. assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
  325. assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
  326. Or(And(-oo < x, x < 0),
  327. And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo))
  328. raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
  329. 1 - 1/sqrt(x)), '<', x))
  330. def test_issue_10047():
  331. # issue 10047: this must remain an inequality, not True, since if x
  332. # is not real the inequality is invalid
  333. # assert solve(sin(x) < 2) == (x <= oo)
  334. # with PR 16956, (x <= oo) autoevaluates when x is extended_real
  335. # which is assumed in the current implementation of inequality solvers
  336. assert solve(sin(x) < 2) == True
  337. assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
  338. def test_issue_10268():
  339. assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000))
  340. @XFAIL
  341. def test_isolve_Sets():
  342. n = Dummy('n')
  343. assert isolve(Abs(x) <= n, x, relational=False) == \
  344. Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
  345. def test_integer_domain_relational_isolve():
  346. dom = FiniteSet(0, 3)
  347. x = Symbol('x',zero=False)
  348. assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain=dom) == Eq(x, 3)
  349. x = Symbol('x')
  350. assert isolve(x + 2 < 0, x, domain=S.Integers) == \
  351. (x <= -3) & (x > -oo) & Eq(Mod(x, 1), 0)
  352. assert isolve(2 * x + 3 > 0, x, domain=S.Integers) == \
  353. (x >= -1) & (x < oo) & Eq(Mod(x, 1), 0)
  354. assert isolve((x ** 2 + 3 * x - 2) < 0, x, domain=S.Integers) == \
  355. (x >= -3) & (x <= 0) & Eq(Mod(x, 1), 0)
  356. assert isolve((x ** 2 + 3 * x - 2) > 0, x, domain=S.Integers) == \
  357. ((x >= 1) & (x < oo) & Eq(Mod(x, 1), 0)) | (
  358. (x <= -4) & (x > -oo) & Eq(Mod(x, 1), 0))
  359. def test_issue_10671_12466():
  360. assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
  361. i = Interval(1, 10)
  362. assert solveset((1/x).diff(x) < 0, x, i) == i
  363. assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
  364. Interval.Lopen(6, 7)
  365. def test__solve_inequality():
  366. for op in (Gt, Lt, Le, Ge, Eq, Ne):
  367. assert _solve_inequality(op(x, 1), x).lhs == x
  368. assert _solve_inequality(op(S.One, x), x).lhs == x
  369. # don't get tricked by symbol on right: solve it
  370. assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
  371. ie = Eq(S.One, y)
  372. assert _solve_inequality(ie, x) == ie
  373. for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
  374. for c in (0, 1):
  375. e = 2*fx - c > 0
  376. assert _solve_inequality(e, x, linear=True) == (
  377. fx > c/S(2))
  378. assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
  379. x*(x + 1) < S.Half)
  380. assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
  381. nz = Symbol('nz', nonzero=True)
  382. assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
  383. assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
  384. a = Symbol('a', positive=True)
  385. assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
  386. assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
  387. # make sure to include conditions under which solution is valid
  388. e = Eq(1 - x, x*(1/x - 1))
  389. assert _solve_inequality(e, x) == Ne(x, 0)
  390. assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)
  391. def test__pt():
  392. from sympy.solvers.inequalities import _pt
  393. assert _pt(-oo, oo) == 0
  394. assert _pt(S.One, S(3)) == 2
  395. assert _pt(S.One, oo) == _pt(oo, S.One) == 2
  396. assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half
  397. assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2)
  398. assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2
  399. assert _pt(x, oo) == _pt(oo, x) == x + 1
  400. assert _pt(x, -oo) == _pt(-oo, x) == x - 1
  401. raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))