test_lie_group.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. from sympy.core.function import Function
  2. from sympy.core.numbers import Rational
  3. from sympy.core.relational import Eq
  4. from sympy.core.symbol import (Symbol, symbols)
  5. from sympy.functions.elementary.exponential import (exp, log)
  6. from sympy.functions.elementary.miscellaneous import sqrt
  7. from sympy.functions.elementary.trigonometric import (atan, sin, tan)
  8. from sympy.solvers.ode import (classify_ode, checkinfsol, dsolve, infinitesimals)
  9. from sympy.solvers.ode.subscheck import checkodesol
  10. from sympy.testing.pytest import XFAIL
  11. C1 = Symbol('C1')
  12. x, y = symbols("x y")
  13. f = Function('f')
  14. xi = Function('xi')
  15. eta = Function('eta')
  16. def test_heuristic1():
  17. a, b, c, a4, a3, a2, a1, a0 = symbols("a b c a4 a3 a2 a1 a0")
  18. df = f(x).diff(x)
  19. eq = Eq(df, x**2*f(x))
  20. eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x)
  21. eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
  22. eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x))
  23. eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2)
  24. eq5 = x**2*df - f(x) + x**2*exp(x - (1/x))
  25. eqlist = [eq, eq1, eq2, eq3, eq4, eq5]
  26. i = infinitesimals(eq, hint='abaco1_simple')
  27. assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0},
  28. {eta(x, f(x)): f(x), xi(x, f(x)): 0},
  29. {eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}]
  30. i1 = infinitesimals(eq1, hint='abaco1_simple')
  31. assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}]
  32. i2 = infinitesimals(eq2, hint='abaco1_simple')
  33. assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}]
  34. i3 = infinitesimals(eq3, hint='abaco1_simple')
  35. assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1},
  36. {eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}]
  37. i4 = infinitesimals(eq4, hint='abaco1_simple')
  38. assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0},
  39. {eta(x, f(x)): 0,
  40. xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}]
  41. i5 = infinitesimals(eq5, hint='abaco1_simple')
  42. assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}]
  43. ilist = [i, i1, i2, i3, i4, i5]
  44. for eq, i in (zip(eqlist, ilist)):
  45. check = checkinfsol(eq, i)
  46. assert check[0]
  47. # This ODE can be solved by the Lie Group method, when there are
  48. # better assumptions
  49. eq6 = df - (f(x)/x)*(x*log(x**2/f(x)) + 2)
  50. i = infinitesimals(eq6, hint='abaco1_product')
  51. assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}]
  52. assert checkinfsol(eq6, i)[0]
  53. eq7 = x*(f(x).diff(x)) + 1 - f(x)**2
  54. i = infinitesimals(eq7, hint='chi')
  55. assert checkinfsol(eq7, i)[0]
  56. def test_heuristic3():
  57. a, b = symbols("a b")
  58. df = f(x).diff(x)
  59. eq = x**2*df + x*f(x) + f(x)**2 + x**2
  60. i = infinitesimals(eq, hint='bivariate')
  61. assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}]
  62. assert checkinfsol(eq, i)[0]
  63. eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x
  64. i = infinitesimals(eq, hint='bivariate')
  65. assert checkinfsol(eq, i)[0]
  66. def test_heuristic_function_sum():
  67. eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
  68. (1 - 3*f(x))*(x/f(x)**2))
  69. i = infinitesimals(eq, hint='function_sum')
  70. assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
  71. assert checkinfsol(eq, i)[0]
  72. def test_heuristic_abaco2_similar():
  73. a, b = symbols("a b")
  74. F = Function('F')
  75. eq = f(x).diff(x) - F(a*x + b*f(x))
  76. i = infinitesimals(eq, hint='abaco2_similar')
  77. assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}]
  78. assert checkinfsol(eq, i)[0]
  79. eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x)))
  80. i = infinitesimals(eq, hint='abaco2_similar')
  81. assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}]
  82. assert checkinfsol(eq, i)[0]
  83. def test_heuristic_abaco2_unique_unknown():
  84. a, b = symbols("a b")
  85. F = Function('F')
  86. eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b)
  87. i = infinitesimals(eq, hint='abaco2_unique_unknown')
  88. assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}]
  89. assert checkinfsol(eq, i)[0]
  90. eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x)))
  91. i = infinitesimals(eq, hint='abaco2_unique_unknown')
  92. assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}]
  93. assert checkinfsol(eq, i)[0]
  94. eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a
  95. i = infinitesimals(eq, hint='abaco2_unique_unknown')
  96. assert checkinfsol(eq, i)[0]
  97. def test_heuristic_linear():
  98. a, b, m, n = symbols("a b m n")
  99. eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1))
  100. i = infinitesimals(eq, hint='linear')
  101. assert checkinfsol(eq, i)[0]
  102. @XFAIL
  103. def test_kamke():
  104. a, b, alpha, c = symbols("a b alpha c")
  105. eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c
  106. i = infinitesimals(eq, hint='sum_function') # XFAIL
  107. assert checkinfsol(eq, i)[0]
  108. def test_user_infinitesimals():
  109. x = Symbol("x") # assuming x is real generates an error
  110. eq = x*(f(x).diff(x)) + 1 - f(x)**2
  111. sol = Eq(f(x), (C1 + x**2)/(C1 - x**2))
  112. infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0}
  113. assert dsolve(eq, hint='lie_group', **infinitesimals) == sol
  114. assert checkodesol(eq, sol) == (True, 0)
  115. @XFAIL
  116. def test_lie_group_issue15219():
  117. eqn = exp(f(x).diff(x)-f(x))
  118. assert 'lie_group' not in classify_ode(eqn, f(x))