1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- from sympy.core.numbers import E
- from sympy.core.singleton import S
- from sympy.functions.elementary.exponential import exp
- from sympy.functions.elementary.hyperbolic import tanh
- from sympy.functions.elementary.trigonometric import (cos, sin)
- from sympy.series.order import Order
- from sympy.abc import x, y
- def test_sin():
- e = sin(x).lseries(x)
- assert next(e) == x
- assert next(e) == -x**3/6
- assert next(e) == x**5/120
- def test_cos():
- e = cos(x).lseries(x)
- assert next(e) == 1
- assert next(e) == -x**2/2
- assert next(e) == x**4/24
- def test_exp():
- e = exp(x).lseries(x)
- assert next(e) == 1
- assert next(e) == x
- assert next(e) == x**2/2
- assert next(e) == x**3/6
- def test_exp2():
- e = exp(cos(x)).lseries(x)
- assert next(e) == E
- assert next(e) == -E*x**2/2
- assert next(e) == E*x**4/6
- assert next(e) == -31*E*x**6/720
- def test_simple():
- assert list(x.lseries()) == [x]
- assert list(S.One.lseries(x)) == [1]
- assert not next((x/(x + y)).lseries(y)).has(Order)
- def test_issue_5183():
- s = (x + 1/x).lseries()
- assert list(s) == [1/x, x]
- assert next((x + x**2).lseries()) == x
- assert next(((1 + x)**7).lseries(x)) == 1
- assert next((sin(x + y)).series(x, n=3).lseries(y)) == x
- # it would be nice if all terms were grouped, but in the
- # following case that would mean that all the terms would have
- # to be known since, for example, every term has a constant in it.
- s = ((1 + x)**7).series(x, 1, n=None)
- assert [next(s) for i in range(2)] == [128, -448 + 448*x]
- def test_issue_6999():
- s = tanh(x).lseries(x, 1)
- assert next(s) == tanh(1)
- assert next(s) == x - (x - 1)*tanh(1)**2 - 1
- assert next(s) == -(x - 1)**2*tanh(1) + (x - 1)**2*tanh(1)**3
- assert next(s) == -(x - 1)**3*tanh(1)**4 - (x - 1)**3/3 + \
- 4*(x - 1)**3*tanh(1)**2/3
|