123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- from sympy.concrete.summations import Sum
- from sympy.core.add import Add
- from sympy.core.numbers import (I, Rational, oo, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.combinatorial.factorials import (binomial, factorial, subfactorial)
- from sympy.functions.combinatorial.numbers import (fibonacci, harmonic)
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import (cos, sin)
- from sympy.functions.special.gamma_functions import gamma
- from sympy.series.limitseq import limit_seq
- from sympy.series.limitseq import difference_delta as dd
- from sympy.testing.pytest import raises, XFAIL
- from sympy.calculus.accumulationbounds import AccumulationBounds
- n, m, k = symbols('n m k', integer=True)
- def test_difference_delta():
- e = n*(n + 1)
- e2 = e * k
- assert dd(e) == 2*n + 2
- assert dd(e2, n, 2) == k*(4*n + 6)
- raises(ValueError, lambda: dd(e2))
- raises(ValueError, lambda: dd(e2, n, oo))
- def test_difference_delta__Sum():
- e = Sum(1/k, (k, 1, n))
- assert dd(e, n) == 1/(n + 1)
- assert dd(e, n, 5) == Add(*[1/(i + n + 1) for i in range(5)])
- e = Sum(1/k, (k, 1, 3*n))
- assert dd(e, n) == Add(*[1/(i + 3*n + 1) for i in range(3)])
- e = n * Sum(1/k, (k, 1, n))
- assert dd(e, n) == 1 + Sum(1/k, (k, 1, n))
- e = Sum(1/k, (k, 1, n), (m, 1, n))
- assert dd(e, n) == harmonic(n)
- def test_difference_delta__Add():
- e = n + n*(n + 1)
- assert dd(e, n) == 2*n + 3
- assert dd(e, n, 2) == 4*n + 8
- e = n + Sum(1/k, (k, 1, n))
- assert dd(e, n) == 1 + 1/(n + 1)
- assert dd(e, n, 5) == 5 + Add(*[1/(i + n + 1) for i in range(5)])
- def test_difference_delta__Pow():
- e = 4**n
- assert dd(e, n) == 3*4**n
- assert dd(e, n, 2) == 15*4**n
- e = 4**(2*n)
- assert dd(e, n) == 15*4**(2*n)
- assert dd(e, n, 2) == 255*4**(2*n)
- e = n**4
- assert dd(e, n) == (n + 1)**4 - n**4
- e = n**n
- assert dd(e, n) == (n + 1)**(n + 1) - n**n
- def test_limit_seq():
- e = binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n))
- assert limit_seq(e) == S(3) / 4
- assert limit_seq(e, m) == e
- e = (5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5)
- assert limit_seq(e, n) == S(5) / 3
- e = (harmonic(n) * Sum(harmonic(k), (k, 1, n))) / (n * harmonic(2*n)**2)
- assert limit_seq(e, n) == 1
- e = Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n)
- assert limit_seq(e, n) == 4
- e = (Sum(binomial(3*k, k) * binomial(5*k, k), (k, 1, n)) /
- (binomial(3*n, n) * binomial(5*n, n)))
- assert limit_seq(e, n) == S(84375) / 83351
- e = Sum(harmonic(k)**2/k, (k, 1, 2*n)) / harmonic(n)**3
- assert limit_seq(e, n) == S.One / 3
- raises(ValueError, lambda: limit_seq(e * m))
- def test_alternating_sign():
- assert limit_seq((-1)**n/n**2, n) == 0
- assert limit_seq((-2)**(n+1)/(n + 3**n), n) == 0
- assert limit_seq((2*n + (-1)**n)/(n + 1), n) == 2
- assert limit_seq(sin(pi*n), n) == 0
- assert limit_seq(cos(2*pi*n), n) == 1
- assert limit_seq((S.NegativeOne/5)**n, n) == 0
- assert limit_seq((Rational(-1, 5))**n, n) == 0
- assert limit_seq((I/3)**n, n) == 0
- assert limit_seq(sqrt(n)*(I/2)**n, n) == 0
- assert limit_seq(n**7*(I/3)**n, n) == 0
- assert limit_seq(n/(n + 1) + (I/2)**n, n) == 1
- def test_accum_bounds():
- assert limit_seq((-1)**n, n) == AccumulationBounds(-1, 1)
- assert limit_seq(cos(pi*n), n) == AccumulationBounds(-1, 1)
- assert limit_seq(sin(pi*n/2)**2, n) == AccumulationBounds(0, 1)
- assert limit_seq(2*(-3)**n/(n + 3**n), n) == AccumulationBounds(-2, 2)
- assert limit_seq(3*n/(n + 1) + 2*(-1)**n, n) == AccumulationBounds(1, 5)
- def test_limitseq_sum():
- from sympy.abc import x, y, z
- assert limit_seq(Sum(1/x, (x, 1, y)) - log(y), y) == S.EulerGamma
- assert limit_seq(Sum(1/x, (x, 1, y)) - 1/y, y) is S.Infinity
- assert (limit_seq(binomial(2*x, x) / Sum(binomial(2*y, y), (y, 1, x)), x) ==
- S(3) / 4)
- assert (limit_seq(Sum(y**2 * Sum(2**z/z, (z, 1, y)), (y, 1, x)) /
- (2**x*x), x) == 4)
- def test_issue_9308():
- assert limit_seq(subfactorial(n)/factorial(n), n) == exp(-1)
- def test_issue_10382():
- n = Symbol('n', integer=True)
- assert limit_seq(fibonacci(n+1)/fibonacci(n), n).together() == S.GoldenRatio
- def test_issue_11672():
- assert limit_seq(Rational(-1, 2)**n, n) == 0
- def test_issue_14196():
- k, n = symbols('k, n', positive=True)
- m = Symbol('m')
- assert limit_seq(Sum(m**k, (m, 1, n)).doit()/(n**(k + 1)), n) == 1/(k + 1)
- def test_issue_16735():
- assert limit_seq(5**n/factorial(n), n) == 0
- def test_issue_19868():
- assert limit_seq(1/gamma(n + S.One/2), n) == 0
- @XFAIL
- def test_limit_seq_fail():
- # improve Summation algorithm or add ad-hoc criteria
- e = (harmonic(n)**3 * Sum(1/harmonic(k), (k, 1, n)) /
- (n * Sum(harmonic(k)/k, (k, 1, n))))
- assert limit_seq(e, n) == 2
- # No unique dominant term
- e = (Sum(2**k * binomial(2*k, k) / k**2, (k, 1, n)) /
- (Sum(2**k/k*2, (k, 1, n)) * Sum(binomial(2*k, k), (k, 1, n))))
- assert limit_seq(e, n) == S(3) / 7
- # Simplifications of summations needs to be improved.
- e = n**3*Sum(2**k/k**2, (k, 1, n))**2 / (2**n * Sum(2**k/k, (k, 1, n)))
- assert limit_seq(e, n) == 2
- e = (harmonic(n) * Sum(2**k/k, (k, 1, n)) /
- (n * Sum(2**k*harmonic(k)/k**2, (k, 1, n))))
- assert limit_seq(e, n) == 1
- e = (Sum(2**k*factorial(k) / k**2, (k, 1, 2*n)) /
- (Sum(4**k/k**2, (k, 1, n)) * Sum(factorial(k), (k, 1, 2*n))))
- assert limit_seq(e, n) == S(3) / 16
|