test_limitseq.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.add import Add
  3. from sympy.core.numbers import (I, Rational, oo, pi)
  4. from sympy.core.singleton import S
  5. from sympy.core.symbol import (Symbol, symbols)
  6. from sympy.functions.combinatorial.factorials import (binomial, factorial, subfactorial)
  7. from sympy.functions.combinatorial.numbers import (fibonacci, harmonic)
  8. from sympy.functions.elementary.exponential import (exp, log)
  9. from sympy.functions.elementary.miscellaneous import sqrt
  10. from sympy.functions.elementary.trigonometric import (cos, sin)
  11. from sympy.functions.special.gamma_functions import gamma
  12. from sympy.series.limitseq import limit_seq
  13. from sympy.series.limitseq import difference_delta as dd
  14. from sympy.testing.pytest import raises, XFAIL
  15. from sympy.calculus.accumulationbounds import AccumulationBounds
  16. n, m, k = symbols('n m k', integer=True)
  17. def test_difference_delta():
  18. e = n*(n + 1)
  19. e2 = e * k
  20. assert dd(e) == 2*n + 2
  21. assert dd(e2, n, 2) == k*(4*n + 6)
  22. raises(ValueError, lambda: dd(e2))
  23. raises(ValueError, lambda: dd(e2, n, oo))
  24. def test_difference_delta__Sum():
  25. e = Sum(1/k, (k, 1, n))
  26. assert dd(e, n) == 1/(n + 1)
  27. assert dd(e, n, 5) == Add(*[1/(i + n + 1) for i in range(5)])
  28. e = Sum(1/k, (k, 1, 3*n))
  29. assert dd(e, n) == Add(*[1/(i + 3*n + 1) for i in range(3)])
  30. e = n * Sum(1/k, (k, 1, n))
  31. assert dd(e, n) == 1 + Sum(1/k, (k, 1, n))
  32. e = Sum(1/k, (k, 1, n), (m, 1, n))
  33. assert dd(e, n) == harmonic(n)
  34. def test_difference_delta__Add():
  35. e = n + n*(n + 1)
  36. assert dd(e, n) == 2*n + 3
  37. assert dd(e, n, 2) == 4*n + 8
  38. e = n + Sum(1/k, (k, 1, n))
  39. assert dd(e, n) == 1 + 1/(n + 1)
  40. assert dd(e, n, 5) == 5 + Add(*[1/(i + n + 1) for i in range(5)])
  41. def test_difference_delta__Pow():
  42. e = 4**n
  43. assert dd(e, n) == 3*4**n
  44. assert dd(e, n, 2) == 15*4**n
  45. e = 4**(2*n)
  46. assert dd(e, n) == 15*4**(2*n)
  47. assert dd(e, n, 2) == 255*4**(2*n)
  48. e = n**4
  49. assert dd(e, n) == (n + 1)**4 - n**4
  50. e = n**n
  51. assert dd(e, n) == (n + 1)**(n + 1) - n**n
  52. def test_limit_seq():
  53. e = binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n))
  54. assert limit_seq(e) == S(3) / 4
  55. assert limit_seq(e, m) == e
  56. e = (5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5)
  57. assert limit_seq(e, n) == S(5) / 3
  58. e = (harmonic(n) * Sum(harmonic(k), (k, 1, n))) / (n * harmonic(2*n)**2)
  59. assert limit_seq(e, n) == 1
  60. e = Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n)
  61. assert limit_seq(e, n) == 4
  62. e = (Sum(binomial(3*k, k) * binomial(5*k, k), (k, 1, n)) /
  63. (binomial(3*n, n) * binomial(5*n, n)))
  64. assert limit_seq(e, n) == S(84375) / 83351
  65. e = Sum(harmonic(k)**2/k, (k, 1, 2*n)) / harmonic(n)**3
  66. assert limit_seq(e, n) == S.One / 3
  67. raises(ValueError, lambda: limit_seq(e * m))
  68. def test_alternating_sign():
  69. assert limit_seq((-1)**n/n**2, n) == 0
  70. assert limit_seq((-2)**(n+1)/(n + 3**n), n) == 0
  71. assert limit_seq((2*n + (-1)**n)/(n + 1), n) == 2
  72. assert limit_seq(sin(pi*n), n) == 0
  73. assert limit_seq(cos(2*pi*n), n) == 1
  74. assert limit_seq((S.NegativeOne/5)**n, n) == 0
  75. assert limit_seq((Rational(-1, 5))**n, n) == 0
  76. assert limit_seq((I/3)**n, n) == 0
  77. assert limit_seq(sqrt(n)*(I/2)**n, n) == 0
  78. assert limit_seq(n**7*(I/3)**n, n) == 0
  79. assert limit_seq(n/(n + 1) + (I/2)**n, n) == 1
  80. def test_accum_bounds():
  81. assert limit_seq((-1)**n, n) == AccumulationBounds(-1, 1)
  82. assert limit_seq(cos(pi*n), n) == AccumulationBounds(-1, 1)
  83. assert limit_seq(sin(pi*n/2)**2, n) == AccumulationBounds(0, 1)
  84. assert limit_seq(2*(-3)**n/(n + 3**n), n) == AccumulationBounds(-2, 2)
  85. assert limit_seq(3*n/(n + 1) + 2*(-1)**n, n) == AccumulationBounds(1, 5)
  86. def test_limitseq_sum():
  87. from sympy.abc import x, y, z
  88. assert limit_seq(Sum(1/x, (x, 1, y)) - log(y), y) == S.EulerGamma
  89. assert limit_seq(Sum(1/x, (x, 1, y)) - 1/y, y) is S.Infinity
  90. assert (limit_seq(binomial(2*x, x) / Sum(binomial(2*y, y), (y, 1, x)), x) ==
  91. S(3) / 4)
  92. assert (limit_seq(Sum(y**2 * Sum(2**z/z, (z, 1, y)), (y, 1, x)) /
  93. (2**x*x), x) == 4)
  94. def test_issue_9308():
  95. assert limit_seq(subfactorial(n)/factorial(n), n) == exp(-1)
  96. def test_issue_10382():
  97. n = Symbol('n', integer=True)
  98. assert limit_seq(fibonacci(n+1)/fibonacci(n), n).together() == S.GoldenRatio
  99. def test_issue_11672():
  100. assert limit_seq(Rational(-1, 2)**n, n) == 0
  101. def test_issue_14196():
  102. k, n = symbols('k, n', positive=True)
  103. m = Symbol('m')
  104. assert limit_seq(Sum(m**k, (m, 1, n)).doit()/(n**(k + 1)), n) == 1/(k + 1)
  105. def test_issue_16735():
  106. assert limit_seq(5**n/factorial(n), n) == 0
  107. def test_issue_19868():
  108. assert limit_seq(1/gamma(n + S.One/2), n) == 0
  109. @XFAIL
  110. def test_limit_seq_fail():
  111. # improve Summation algorithm or add ad-hoc criteria
  112. e = (harmonic(n)**3 * Sum(1/harmonic(k), (k, 1, n)) /
  113. (n * Sum(harmonic(k)/k, (k, 1, n))))
  114. assert limit_seq(e, n) == 2
  115. # No unique dominant term
  116. e = (Sum(2**k * binomial(2*k, k) / k**2, (k, 1, n)) /
  117. (Sum(2**k/k*2, (k, 1, n)) * Sum(binomial(2*k, k), (k, 1, n))))
  118. assert limit_seq(e, n) == S(3) / 7
  119. # Simplifications of summations needs to be improved.
  120. e = n**3*Sum(2**k/k**2, (k, 1, n))**2 / (2**n * Sum(2**k/k, (k, 1, n)))
  121. assert limit_seq(e, n) == 2
  122. e = (harmonic(n) * Sum(2**k/k, (k, 1, n)) /
  123. (n * Sum(2**k*harmonic(k)/k**2, (k, 1, n))))
  124. assert limit_seq(e, n) == 1
  125. e = (Sum(2**k*factorial(k) / k**2, (k, 1, 2*n)) /
  126. (Sum(4**k/k**2, (k, 1, n)) * Sum(factorial(k), (k, 1, 2*n))))
  127. assert limit_seq(e, n) == S(3) / 16