approximants.py 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. from sympy.core.singleton import S
  2. from sympy.core.symbol import Symbol
  3. from sympy.polys.polytools import lcm
  4. from sympy.utilities import public
  5. @public
  6. def approximants(l, X=Symbol('x'), simplify=False):
  7. """
  8. Return a generator for consecutive Pade approximants for a series.
  9. It can also be used for computing the rational generating function of a
  10. series when possible, since the last approximant returned by the generator
  11. will be the generating function (if any).
  12. Explanation
  13. ===========
  14. The input list can contain more complex expressions than integer or rational
  15. numbers; symbols may also be involved in the computation. An example below
  16. show how to compute the generating function of the whole Pascal triangle.
  17. The generator can be asked to apply the sympy.simplify function on each
  18. generated term, which will make the computation slower; however it may be
  19. useful when symbols are involved in the expressions.
  20. Examples
  21. ========
  22. >>> from sympy.series import approximants
  23. >>> from sympy import lucas, fibonacci, symbols, binomial
  24. >>> g = [lucas(k) for k in range(16)]
  25. >>> [e for e in approximants(g)]
  26. [2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)]
  27. >>> h = [fibonacci(k) for k in range(16)]
  28. >>> [e for e in approximants(h)]
  29. [x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)]
  30. >>> x, t = symbols("x,t")
  31. >>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
  32. >>> y = approximants(p, t)
  33. >>> for k in range(3): print(next(y))
  34. 1
  35. (x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1)))
  36. nan
  37. >>> y = approximants(p, t, simplify=True)
  38. >>> for k in range(3): print(next(y))
  39. 1
  40. -1/(t*(x + 1) - 1)
  41. nan
  42. See Also
  43. ========
  44. sympy.concrete.guess.guess_generating_function_rational
  45. mpmath.pade
  46. """
  47. from sympy.simplify import simplify as simp
  48. from sympy.simplify.radsimp import denom
  49. p1, q1 = [S.One], [S.Zero]
  50. p2, q2 = [S.Zero], [S.One]
  51. while len(l):
  52. b = 0
  53. while l[b]==0:
  54. b += 1
  55. if b == len(l):
  56. return
  57. m = [S.One/l[b]]
  58. for k in range(b+1, len(l)):
  59. s = 0
  60. for j in range(b, k):
  61. s -= l[j+1] * m[b-j-1]
  62. m.append(s/l[b])
  63. l = m
  64. a, l[0] = l[0], 0
  65. p = [0] * max(len(p2), b+len(p1))
  66. q = [0] * max(len(q2), b+len(q1))
  67. for k in range(len(p2)):
  68. p[k] = a*p2[k]
  69. for k in range(b, b+len(p1)):
  70. p[k] += p1[k-b]
  71. for k in range(len(q2)):
  72. q[k] = a*q2[k]
  73. for k in range(b, b+len(q1)):
  74. q[k] += q1[k-b]
  75. while p[-1]==0: p.pop()
  76. while q[-1]==0: q.pop()
  77. p1, p2 = p2, p
  78. q1, q2 = q2, q
  79. # yield result
  80. c = 1
  81. for x in p:
  82. c = lcm(c, denom(x))
  83. for x in q:
  84. c = lcm(c, denom(x))
  85. out = ( sum(c*e*X**k for k, e in enumerate(p))
  86. / sum(c*e*X**k for k, e in enumerate(q)) )
  87. if simplify:
  88. yield(simp(out))
  89. else:
  90. yield out
  91. return