test_pycode.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. from sympy.codegen import Assignment
  2. from sympy.codegen.ast import none
  3. from sympy.codegen.cfunctions import expm1, log1p
  4. from sympy.codegen.scipy_nodes import cosm1
  5. from sympy.codegen.matrix_nodes import MatrixSolve
  6. from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational, Pow
  7. from sympy.core.numbers import pi
  8. from sympy.core.singleton import S
  9. from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt, Min, Max, cot, acsch, asec, coth
  10. from sympy.logic import And, Or
  11. from sympy.matrices import SparseMatrix, MatrixSymbol, Identity
  12. from sympy.printing.pycode import (
  13. MpmathPrinter, PythonCodePrinter, pycode, SymPyPrinter
  14. )
  15. from sympy.printing.tensorflow import TensorflowPrinter
  16. from sympy.printing.numpy import NumPyPrinter, SciPyPrinter
  17. from sympy.testing.pytest import raises, skip
  18. from sympy.tensor import IndexedBase, Idx
  19. from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayDiagonal, ArrayContraction, ZeroArray, OneArray
  20. from sympy.external import import_module
  21. from sympy.functions.special.gamma_functions import loggamma
  22. x, y, z = symbols('x y z')
  23. p = IndexedBase("p")
  24. def test_PythonCodePrinter():
  25. prntr = PythonCodePrinter()
  26. assert not prntr.module_imports
  27. assert prntr.doprint(x**y) == 'x**y'
  28. assert prntr.doprint(Mod(x, 2)) == 'x % 2'
  29. assert prntr.doprint(-Mod(x, y)) == '-(x % y)'
  30. assert prntr.doprint(Mod(-x, y)) == '(-x) % y'
  31. assert prntr.doprint(And(x, y)) == 'x and y'
  32. assert prntr.doprint(Or(x, y)) == 'x or y'
  33. assert prntr.doprint(1/(x+y)) == '1/(x + y)'
  34. assert not prntr.module_imports
  35. assert prntr.doprint(pi) == 'math.pi'
  36. assert prntr.module_imports == {'math': {'pi'}}
  37. assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
  38. assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
  39. assert prntr.module_imports == {'math': {'pi', 'sqrt'}}
  40. assert prntr.doprint(acos(x)) == 'math.acos(x)'
  41. assert prntr.doprint(cot(x)) == '1/math.tan(x)'
  42. assert prntr.doprint(coth(x)) == '(math.exp(x) + math.exp(-x))/(math.exp(x) - math.exp(-x))'
  43. assert prntr.doprint(asec(x)) == 'math.acos(1/x)'
  44. assert prntr.doprint(acsch(x)) == 'math.log(math.sqrt(1 + x**(-2)) + 1/x)'
  45. assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
  46. assert prntr.doprint(Piecewise((1, Eq(x, 0)),
  47. (2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
  48. assert prntr.doprint(Piecewise((2, Le(x, 0)),
  49. (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
  50. ' (3) if (x > 0) else None)'
  51. assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
  52. assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
  53. assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)'
  54. assert prntr.doprint((2,3)) == "(2, 3)"
  55. assert prntr.doprint([2,3]) == "[2, 3]"
  56. assert prntr.doprint(Min(x, y)) == "min(x, y)"
  57. assert prntr.doprint(Max(x, y)) == "max(x, y)"
  58. def test_PythonCodePrinter_standard():
  59. prntr = PythonCodePrinter()
  60. assert prntr.standard == 'python3'
  61. raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'}))
  62. def test_MpmathPrinter():
  63. p = MpmathPrinter()
  64. assert p.doprint(sign(x)) == 'mpmath.sign(x)'
  65. assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
  66. assert p.doprint(S.Exp1) == 'mpmath.e'
  67. assert p.doprint(S.Pi) == 'mpmath.pi'
  68. assert p.doprint(S.GoldenRatio) == 'mpmath.phi'
  69. assert p.doprint(S.EulerGamma) == 'mpmath.euler'
  70. assert p.doprint(S.NaN) == 'mpmath.nan'
  71. assert p.doprint(S.Infinity) == 'mpmath.inf'
  72. assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf'
  73. assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)'
  74. def test_NumPyPrinter():
  75. from sympy.core.function import Lambda
  76. from sympy.matrices.expressions.adjoint import Adjoint
  77. from sympy.matrices.expressions.diagonal import (DiagMatrix, DiagonalMatrix, DiagonalOf)
  78. from sympy.matrices.expressions.funcmatrix import FunctionMatrix
  79. from sympy.matrices.expressions.hadamard import HadamardProduct
  80. from sympy.matrices.expressions.kronecker import KroneckerProduct
  81. from sympy.matrices.expressions.special import (OneMatrix, ZeroMatrix)
  82. from sympy.abc import a, b
  83. p = NumPyPrinter()
  84. assert p.doprint(sign(x)) == 'numpy.sign(x)'
  85. A = MatrixSymbol("A", 2, 2)
  86. B = MatrixSymbol("B", 2, 2)
  87. C = MatrixSymbol("C", 1, 5)
  88. D = MatrixSymbol("D", 3, 4)
  89. assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
  90. assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
  91. assert p.doprint(Identity(3)) == "numpy.eye(3)"
  92. u = MatrixSymbol('x', 2, 1)
  93. v = MatrixSymbol('y', 2, 1)
  94. assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
  95. assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
  96. assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
  97. assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
  98. assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
  99. "numpy.fromfunction(lambda a, b: a + b, (4, 5))"
  100. assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
  101. assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
  102. assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
  103. assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
  104. assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
  105. assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"
  106. # Workaround for numpy negative integer power errors
  107. assert p.doprint(x**-1) == 'x**(-1.0)'
  108. assert p.doprint(x**-2) == 'x**(-2.0)'
  109. expr = Pow(2, -1, evaluate=False)
  110. assert p.doprint(expr) == "2**(-1.0)"
  111. assert p.doprint(S.Exp1) == 'numpy.e'
  112. assert p.doprint(S.Pi) == 'numpy.pi'
  113. assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
  114. assert p.doprint(S.NaN) == 'numpy.nan'
  115. assert p.doprint(S.Infinity) == 'numpy.PINF'
  116. assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
  117. def test_issue_18770():
  118. numpy = import_module('numpy')
  119. if not numpy:
  120. skip("numpy not installed.")
  121. from sympy.functions.elementary.miscellaneous import (Max, Min)
  122. from sympy.utilities.lambdify import lambdify
  123. expr1 = Min(0.1*x + 3, x + 1, 0.5*x + 1)
  124. func = lambdify(x, expr1, "numpy")
  125. assert (func(numpy.linspace(0, 3, 3)) == [1.0, 1.75, 2.5 ]).all()
  126. assert func(4) == 3
  127. expr1 = Max(x**2, x**3)
  128. func = lambdify(x,expr1, "numpy")
  129. assert (func(numpy.linspace(-1, 2, 4)) == [1, 0, 1, 8] ).all()
  130. assert func(4) == 64
  131. def test_SciPyPrinter():
  132. p = SciPyPrinter()
  133. expr = acos(x)
  134. assert 'numpy' not in p.module_imports
  135. assert p.doprint(expr) == 'numpy.arccos(x)'
  136. assert 'numpy' in p.module_imports
  137. assert not any(m.startswith('scipy') for m in p.module_imports)
  138. smat = SparseMatrix(2, 5, {(0, 1): 3})
  139. assert p.doprint(smat) == \
  140. 'scipy.sparse.coo_matrix(([3], ([0], [1])), shape=(2, 5))'
  141. assert 'scipy.sparse' in p.module_imports
  142. assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio'
  143. assert p.doprint(S.Pi) == 'scipy.constants.pi'
  144. assert p.doprint(S.Exp1) == 'numpy.e'
  145. def test_pycode_reserved_words():
  146. s1, s2 = symbols('if else')
  147. raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
  148. py_str = pycode(s1 + s2)
  149. assert py_str in ('else_ + if_', 'if_ + else_')
  150. def test_issue_20762():
  151. # Make sure pycode removes curly braces from subscripted variables
  152. a_b, b, a_11 = symbols('a_{b} b a_{11}')
  153. expr = a_b*b
  154. assert pycode(expr) == 'a_b*b'
  155. expr = a_11*b
  156. assert pycode(expr) == 'a_11*b'
  157. def test_sqrt():
  158. prntr = PythonCodePrinter()
  159. assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)'
  160. assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)'
  161. prntr = PythonCodePrinter({'standard' : 'python3'})
  162. assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
  163. assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)'
  164. prntr = MpmathPrinter()
  165. assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)'
  166. assert prntr._print_Pow(sqrt(x), rational=True) == \
  167. "x**(mpmath.mpf(1)/mpmath.mpf(2))"
  168. prntr = NumPyPrinter()
  169. assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
  170. assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
  171. prntr = SciPyPrinter()
  172. assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
  173. assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
  174. prntr = SymPyPrinter()
  175. assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)'
  176. assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
  177. def test_frac():
  178. from sympy.functions.elementary.integers import frac
  179. expr = frac(x)
  180. prntr = NumPyPrinter()
  181. assert prntr.doprint(expr) == 'numpy.mod(x, 1)'
  182. prntr = SciPyPrinter()
  183. assert prntr.doprint(expr) == 'numpy.mod(x, 1)'
  184. prntr = PythonCodePrinter()
  185. assert prntr.doprint(expr) == 'x % 1'
  186. prntr = MpmathPrinter()
  187. assert prntr.doprint(expr) == 'mpmath.frac(x)'
  188. prntr = SymPyPrinter()
  189. assert prntr.doprint(expr) == 'sympy.functions.elementary.integers.frac(x)'
  190. class CustomPrintedObject(Expr):
  191. def _numpycode(self, printer):
  192. return 'numpy'
  193. def _mpmathcode(self, printer):
  194. return 'mpmath'
  195. def test_printmethod():
  196. obj = CustomPrintedObject()
  197. assert NumPyPrinter().doprint(obj) == 'numpy'
  198. assert MpmathPrinter().doprint(obj) == 'mpmath'
  199. def test_codegen_ast_nodes():
  200. assert pycode(none) == 'None'
  201. def test_issue_14283():
  202. prntr = PythonCodePrinter()
  203. assert prntr.doprint(zoo) == "math.nan"
  204. assert prntr.doprint(-oo) == "float('-inf')"
  205. def test_NumPyPrinter_print_seq():
  206. n = NumPyPrinter()
  207. assert n._print_seq(range(2)) == '(0, 1,)'
  208. def test_issue_16535_16536():
  209. from sympy.functions.special.gamma_functions import (lowergamma, uppergamma)
  210. a = symbols('a')
  211. expr1 = lowergamma(a, x)
  212. expr2 = uppergamma(a, x)
  213. prntr = SciPyPrinter()
  214. assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)'
  215. assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)'
  216. prntr = NumPyPrinter()
  217. assert "Not supported" in prntr.doprint(expr1)
  218. assert "Not supported" in prntr.doprint(expr2)
  219. prntr = PythonCodePrinter()
  220. assert "Not supported" in prntr.doprint(expr1)
  221. assert "Not supported" in prntr.doprint(expr2)
  222. def test_Integral():
  223. from sympy.functions.elementary.exponential import exp
  224. from sympy.integrals.integrals import Integral
  225. single = Integral(exp(-x), (x, 0, oo))
  226. double = Integral(x**2*exp(x*y), (x, -z, z), (y, 0, z))
  227. indefinite = Integral(x**2, x)
  228. evaluateat = Integral(x**2, (x, 1))
  229. prntr = SciPyPrinter()
  230. assert prntr.doprint(single) == 'scipy.integrate.quad(lambda x: numpy.exp(-x), 0, numpy.PINF)[0]'
  231. assert prntr.doprint(double) == 'scipy.integrate.nquad(lambda x, y: x**2*numpy.exp(x*y), ((-z, z), (0, z)))[0]'
  232. raises(NotImplementedError, lambda: prntr.doprint(indefinite))
  233. raises(NotImplementedError, lambda: prntr.doprint(evaluateat))
  234. prntr = MpmathPrinter()
  235. assert prntr.doprint(single) == 'mpmath.quad(lambda x: mpmath.exp(-x), (0, mpmath.inf))'
  236. assert prntr.doprint(double) == 'mpmath.quad(lambda x, y: x**2*mpmath.exp(x*y), (-z, z), (0, z))'
  237. raises(NotImplementedError, lambda: prntr.doprint(indefinite))
  238. raises(NotImplementedError, lambda: prntr.doprint(evaluateat))
  239. def test_fresnel_integrals():
  240. from sympy.functions.special.error_functions import (fresnelc, fresnels)
  241. expr1 = fresnelc(x)
  242. expr2 = fresnels(x)
  243. prntr = SciPyPrinter()
  244. assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]'
  245. assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]'
  246. prntr = NumPyPrinter()
  247. assert "Not supported" in prntr.doprint(expr1)
  248. assert "Not supported" in prntr.doprint(expr2)
  249. prntr = PythonCodePrinter()
  250. assert "Not supported" in prntr.doprint(expr1)
  251. assert "Not supported" in prntr.doprint(expr2)
  252. prntr = MpmathPrinter()
  253. assert prntr.doprint(expr1) == 'mpmath.fresnelc(x)'
  254. assert prntr.doprint(expr2) == 'mpmath.fresnels(x)'
  255. def test_beta():
  256. from sympy.functions.special.beta_functions import beta
  257. expr = beta(x, y)
  258. prntr = SciPyPrinter()
  259. assert prntr.doprint(expr) == 'scipy.special.beta(x, y)'
  260. prntr = NumPyPrinter()
  261. assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
  262. prntr = PythonCodePrinter()
  263. assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
  264. prntr = PythonCodePrinter({'allow_unknown_functions': True})
  265. assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
  266. prntr = MpmathPrinter()
  267. assert prntr.doprint(expr) == 'mpmath.beta(x, y)'
  268. def test_airy():
  269. from sympy.functions.special.bessel import (airyai, airybi)
  270. expr1 = airyai(x)
  271. expr2 = airybi(x)
  272. prntr = SciPyPrinter()
  273. assert prntr.doprint(expr1) == 'scipy.special.airy(x)[0]'
  274. assert prntr.doprint(expr2) == 'scipy.special.airy(x)[2]'
  275. prntr = NumPyPrinter()
  276. assert "Not supported" in prntr.doprint(expr1)
  277. assert "Not supported" in prntr.doprint(expr2)
  278. prntr = PythonCodePrinter()
  279. assert "Not supported" in prntr.doprint(expr1)
  280. assert "Not supported" in prntr.doprint(expr2)
  281. def test_airy_prime():
  282. from sympy.functions.special.bessel import (airyaiprime, airybiprime)
  283. expr1 = airyaiprime(x)
  284. expr2 = airybiprime(x)
  285. prntr = SciPyPrinter()
  286. assert prntr.doprint(expr1) == 'scipy.special.airy(x)[1]'
  287. assert prntr.doprint(expr2) == 'scipy.special.airy(x)[3]'
  288. prntr = NumPyPrinter()
  289. assert "Not supported" in prntr.doprint(expr1)
  290. assert "Not supported" in prntr.doprint(expr2)
  291. prntr = PythonCodePrinter()
  292. assert "Not supported" in prntr.doprint(expr1)
  293. assert "Not supported" in prntr.doprint(expr2)
  294. def test_numerical_accuracy_functions():
  295. prntr = SciPyPrinter()
  296. assert prntr.doprint(expm1(x)) == 'numpy.expm1(x)'
  297. assert prntr.doprint(log1p(x)) == 'numpy.log1p(x)'
  298. assert prntr.doprint(cosm1(x)) == 'scipy.special.cosm1(x)'
  299. def test_array_printer():
  300. A = ArraySymbol('A', (4,4,6,6,6))
  301. I = IndexedBase('I')
  302. i,j,k = Idx('i', (0,1)), Idx('j', (2,3)), Idx('k', (4,5))
  303. prntr = NumPyPrinter()
  304. assert prntr.doprint(ZeroArray(5)) == 'numpy.zeros((5,))'
  305. assert prntr.doprint(OneArray(5)) == 'numpy.ones((5,))'
  306. assert prntr.doprint(ArrayContraction(A, [2,3])) == 'numpy.einsum("abccd->abd", A)'
  307. assert prntr.doprint(I) == 'I'
  308. assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'numpy.einsum("abccc->abc", A)'
  309. assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'numpy.einsum("aabbc->cab", A)'
  310. assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'numpy.einsum("abcde->abe", A)'
  311. assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I'
  312. prntr = TensorflowPrinter()
  313. assert prntr.doprint(ZeroArray(5)) == 'tensorflow.zeros((5,))'
  314. assert prntr.doprint(OneArray(5)) == 'tensorflow.ones((5,))'
  315. assert prntr.doprint(ArrayContraction(A, [2,3])) == 'tensorflow.linalg.einsum("abccd->abd", A)'
  316. assert prntr.doprint(I) == 'I'
  317. assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'tensorflow.linalg.einsum("abccc->abc", A)'
  318. assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'tensorflow.linalg.einsum("aabbc->cab", A)'
  319. assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'tensorflow.linalg.einsum("abcde->abe", A)'
  320. assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I'