123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046 |
- from sympy.calculus.accumulationbounds import AccumBounds
- from sympy.concrete.summations import Sum
- from sympy.core.basic import Basic
- from sympy.core.containers import Tuple
- from sympy.core.function import Derivative, Lambda, diff, Function
- from sympy.core.numbers import (zoo, Float, Integer, I, oo, pi, E,
- Rational)
- from sympy.core.relational import Lt, Ge, Ne, Eq
- from sympy.core.singleton import S
- from sympy.core.symbol import symbols, Symbol
- from sympy.core.sympify import sympify
- from sympy.functions.combinatorial.factorials import (factorial2,
- binomial, factorial)
- from sympy.functions.combinatorial.numbers import (lucas, bell,
- catalan, euler, tribonacci, fibonacci, bernoulli)
- from sympy.functions.elementary.complexes import re, im, conjugate, Abs
- from sympy.functions.elementary.exponential import exp, LambertW, log
- from sympy.functions.elementary.hyperbolic import (tanh, acoth, atanh,
- coth, asinh, acsch, asech, acosh, csch, sinh, cosh, sech)
- from sympy.functions.elementary.integers import ceiling, floor
- from sympy.functions.elementary.miscellaneous import Max, Min
- from sympy.functions.elementary.trigonometric import (csc, sec, tan,
- atan, sin, asec, cot, cos, acot, acsc, asin, acos)
- from sympy.functions.special.delta_functions import Heaviside
- from sympy.functions.special.elliptic_integrals import (elliptic_pi,
- elliptic_f, elliptic_k, elliptic_e)
- from sympy.functions.special.error_functions import (fresnelc,
- fresnels, Ei, expint)
- from sympy.functions.special.gamma_functions import (gamma, uppergamma,
- lowergamma)
- from sympy.functions.special.mathieu_functions import (mathieusprime,
- mathieus, mathieucprime, mathieuc)
- from sympy.functions.special.polynomials import (jacobi, chebyshevu,
- chebyshevt, hermite, assoc_legendre, gegenbauer, assoc_laguerre,
- legendre, laguerre)
- from sympy.functions.special.singularity_functions import SingularityFunction
- from sympy.functions.special.zeta_functions import (polylog, stieltjes,
- lerchphi, dirichlet_eta, zeta)
- from sympy.integrals.integrals import Integral
- from sympy.logic.boolalg import (Xor, Or, false, true, And, Equivalent,
- Implies, Not)
- from sympy.matrices.dense import Matrix
- from sympy.matrices.expressions.determinant import Determinant
- from sympy.matrices.expressions.matexpr import MatrixSymbol
- from sympy.ntheory.factor_ import (totient, reduced_totient, primenu,
- primeomega)
- from sympy.physics.quantum import (ComplexSpace, FockSpace, hbar,
- HilbertSpace, Dagger)
- from sympy.printing.mathml import (MathMLPresentationPrinter,
- MathMLPrinter, MathMLContentPrinter, mathml)
- from sympy.series.limits import Limit
- from sympy.sets.contains import Contains
- from sympy.sets.fancysets import Range
- from sympy.sets.sets import (Interval, Union, SymmetricDifference,
- Complement, FiniteSet, Intersection, ProductSet)
- from sympy.stats.rv import RandomSymbol
- from sympy.tensor.indexed import IndexedBase
- from sympy.vector import (Divergence, CoordSys3D, Cross, Curl, Dot,
- Laplacian, Gradient)
- from sympy.testing.pytest import raises
- x, y, z, a, b, c, d, e, n = symbols('x:z a:e n')
- mp = MathMLContentPrinter()
- mpp = MathMLPresentationPrinter()
- def test_mathml_printer():
- m = MathMLPrinter()
- assert m.doprint(1+x) == mp.doprint(1+x)
- def test_content_printmethod():
- assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>'
- def test_content_mathml_core():
- mml_1 = mp._print(1 + x)
- assert mml_1.nodeName == 'apply'
- nodes = mml_1.childNodes
- assert len(nodes) == 3
- assert nodes[0].nodeName == 'plus'
- assert nodes[0].hasChildNodes() is False
- assert nodes[0].nodeValue is None
- assert nodes[1].nodeName in ['cn', 'ci']
- if nodes[1].nodeName == 'cn':
- assert nodes[1].childNodes[0].nodeValue == '1'
- assert nodes[2].childNodes[0].nodeValue == 'x'
- else:
- assert nodes[1].childNodes[0].nodeValue == 'x'
- assert nodes[2].childNodes[0].nodeValue == '1'
- mml_2 = mp._print(x**2)
- assert mml_2.nodeName == 'apply'
- nodes = mml_2.childNodes
- assert nodes[1].childNodes[0].nodeValue == 'x'
- assert nodes[2].childNodes[0].nodeValue == '2'
- mml_3 = mp._print(2*x)
- assert mml_3.nodeName == 'apply'
- nodes = mml_3.childNodes
- assert nodes[0].nodeName == 'times'
- assert nodes[1].childNodes[0].nodeValue == '2'
- assert nodes[2].childNodes[0].nodeValue == 'x'
- mml = mp._print(Float(1.0, 2)*x)
- assert mml.nodeName == 'apply'
- nodes = mml.childNodes
- assert nodes[0].nodeName == 'times'
- assert nodes[1].childNodes[0].nodeValue == '1.0'
- assert nodes[2].childNodes[0].nodeValue == 'x'
- def test_content_mathml_functions():
- mml_1 = mp._print(sin(x))
- assert mml_1.nodeName == 'apply'
- assert mml_1.childNodes[0].nodeName == 'sin'
- assert mml_1.childNodes[1].nodeName == 'ci'
- mml_2 = mp._print(diff(sin(x), x, evaluate=False))
- assert mml_2.nodeName == 'apply'
- assert mml_2.childNodes[0].nodeName == 'diff'
- assert mml_2.childNodes[1].nodeName == 'bvar'
- assert mml_2.childNodes[1].childNodes[
- 0].nodeName == 'ci' # below bvar there's <ci>x/ci>
- mml_3 = mp._print(diff(cos(x*y), x, evaluate=False))
- assert mml_3.nodeName == 'apply'
- assert mml_3.childNodes[0].nodeName == 'partialdiff'
- assert mml_3.childNodes[1].nodeName == 'bvar'
- assert mml_3.childNodes[1].childNodes[
- 0].nodeName == 'ci' # below bvar there's <ci>x/ci>
- def test_content_mathml_limits():
- # XXX No unevaluated limits
- lim_fun = sin(x)/x
- mml_1 = mp._print(Limit(lim_fun, x, 0))
- assert mml_1.childNodes[0].nodeName == 'limit'
- assert mml_1.childNodes[1].nodeName == 'bvar'
- assert mml_1.childNodes[2].nodeName == 'lowlimit'
- assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml()
- def test_content_mathml_integrals():
- integrand = x
- mml_1 = mp._print(Integral(integrand, (x, 0, 1)))
- assert mml_1.childNodes[0].nodeName == 'int'
- assert mml_1.childNodes[1].nodeName == 'bvar'
- assert mml_1.childNodes[2].nodeName == 'lowlimit'
- assert mml_1.childNodes[3].nodeName == 'uplimit'
- assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml()
- def test_content_mathml_matrices():
- A = Matrix([1, 2, 3])
- B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
- mll_1 = mp._print(A)
- assert mll_1.childNodes[0].nodeName == 'matrixrow'
- assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn'
- assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1'
- assert mll_1.childNodes[1].nodeName == 'matrixrow'
- assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn'
- assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
- assert mll_1.childNodes[2].nodeName == 'matrixrow'
- assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn'
- assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3'
- mll_2 = mp._print(B)
- assert mll_2.childNodes[0].nodeName == 'matrixrow'
- assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn'
- assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0'
- assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn'
- assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5'
- assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn'
- assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4'
- assert mll_2.childNodes[1].nodeName == 'matrixrow'
- assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn'
- assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
- assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn'
- assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3'
- assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn'
- assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1'
- assert mll_2.childNodes[2].nodeName == 'matrixrow'
- assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn'
- assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9'
- assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn'
- assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7'
- assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn'
- assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9'
- def test_content_mathml_sums():
- summand = x
- mml_1 = mp._print(Sum(summand, (x, 1, 10)))
- assert mml_1.childNodes[0].nodeName == 'sum'
- assert mml_1.childNodes[1].nodeName == 'bvar'
- assert mml_1.childNodes[2].nodeName == 'lowlimit'
- assert mml_1.childNodes[3].nodeName == 'uplimit'
- assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml()
- def test_content_mathml_tuples():
- mml_1 = mp._print([2])
- assert mml_1.nodeName == 'list'
- assert mml_1.childNodes[0].nodeName == 'cn'
- assert len(mml_1.childNodes) == 1
- mml_2 = mp._print([2, Integer(1)])
- assert mml_2.nodeName == 'list'
- assert mml_2.childNodes[0].nodeName == 'cn'
- assert mml_2.childNodes[1].nodeName == 'cn'
- assert len(mml_2.childNodes) == 2
- def test_content_mathml_add():
- mml = mp._print(x**5 - x**4 + x)
- assert mml.childNodes[0].nodeName == 'plus'
- assert mml.childNodes[1].childNodes[0].nodeName == 'minus'
- assert mml.childNodes[1].childNodes[1].nodeName == 'apply'
- def test_content_mathml_Rational():
- mml_1 = mp._print(Rational(1, 1))
- """should just return a number"""
- assert mml_1.nodeName == 'cn'
- mml_2 = mp._print(Rational(2, 5))
- assert mml_2.childNodes[0].nodeName == 'divide'
- def test_content_mathml_constants():
- mml = mp._print(I)
- assert mml.nodeName == 'imaginaryi'
- mml = mp._print(E)
- assert mml.nodeName == 'exponentiale'
- mml = mp._print(oo)
- assert mml.nodeName == 'infinity'
- mml = mp._print(pi)
- assert mml.nodeName == 'pi'
- assert mathml(hbar) == '<hbar/>'
- assert mathml(S.TribonacciConstant) == '<tribonacciconstant/>'
- assert mathml(S.GoldenRatio) == '<cn>φ</cn>'
- mml = mathml(S.EulerGamma)
- assert mml == '<eulergamma/>'
- mml = mathml(S.EmptySet)
- assert mml == '<emptyset/>'
- mml = mathml(S.true)
- assert mml == '<true/>'
- mml = mathml(S.false)
- assert mml == '<false/>'
- mml = mathml(S.NaN)
- assert mml == '<notanumber/>'
- def test_content_mathml_trig():
- mml = mp._print(sin(x))
- assert mml.childNodes[0].nodeName == 'sin'
- mml = mp._print(cos(x))
- assert mml.childNodes[0].nodeName == 'cos'
- mml = mp._print(tan(x))
- assert mml.childNodes[0].nodeName == 'tan'
- mml = mp._print(cot(x))
- assert mml.childNodes[0].nodeName == 'cot'
- mml = mp._print(csc(x))
- assert mml.childNodes[0].nodeName == 'csc'
- mml = mp._print(sec(x))
- assert mml.childNodes[0].nodeName == 'sec'
- mml = mp._print(asin(x))
- assert mml.childNodes[0].nodeName == 'arcsin'
- mml = mp._print(acos(x))
- assert mml.childNodes[0].nodeName == 'arccos'
- mml = mp._print(atan(x))
- assert mml.childNodes[0].nodeName == 'arctan'
- mml = mp._print(acot(x))
- assert mml.childNodes[0].nodeName == 'arccot'
- mml = mp._print(acsc(x))
- assert mml.childNodes[0].nodeName == 'arccsc'
- mml = mp._print(asec(x))
- assert mml.childNodes[0].nodeName == 'arcsec'
- mml = mp._print(sinh(x))
- assert mml.childNodes[0].nodeName == 'sinh'
- mml = mp._print(cosh(x))
- assert mml.childNodes[0].nodeName == 'cosh'
- mml = mp._print(tanh(x))
- assert mml.childNodes[0].nodeName == 'tanh'
- mml = mp._print(coth(x))
- assert mml.childNodes[0].nodeName == 'coth'
- mml = mp._print(csch(x))
- assert mml.childNodes[0].nodeName == 'csch'
- mml = mp._print(sech(x))
- assert mml.childNodes[0].nodeName == 'sech'
- mml = mp._print(asinh(x))
- assert mml.childNodes[0].nodeName == 'arcsinh'
- mml = mp._print(atanh(x))
- assert mml.childNodes[0].nodeName == 'arctanh'
- mml = mp._print(acosh(x))
- assert mml.childNodes[0].nodeName == 'arccosh'
- mml = mp._print(acoth(x))
- assert mml.childNodes[0].nodeName == 'arccoth'
- mml = mp._print(acsch(x))
- assert mml.childNodes[0].nodeName == 'arccsch'
- mml = mp._print(asech(x))
- assert mml.childNodes[0].nodeName == 'arcsech'
- def test_content_mathml_relational():
- mml_1 = mp._print(Eq(x, 1))
- assert mml_1.nodeName == 'apply'
- assert mml_1.childNodes[0].nodeName == 'eq'
- assert mml_1.childNodes[1].nodeName == 'ci'
- assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
- assert mml_1.childNodes[2].nodeName == 'cn'
- assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
- mml_2 = mp._print(Ne(1, x))
- assert mml_2.nodeName == 'apply'
- assert mml_2.childNodes[0].nodeName == 'neq'
- assert mml_2.childNodes[1].nodeName == 'cn'
- assert mml_2.childNodes[1].childNodes[0].nodeValue == '1'
- assert mml_2.childNodes[2].nodeName == 'ci'
- assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
- mml_3 = mp._print(Ge(1, x))
- assert mml_3.nodeName == 'apply'
- assert mml_3.childNodes[0].nodeName == 'geq'
- assert mml_3.childNodes[1].nodeName == 'cn'
- assert mml_3.childNodes[1].childNodes[0].nodeValue == '1'
- assert mml_3.childNodes[2].nodeName == 'ci'
- assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
- mml_4 = mp._print(Lt(1, x))
- assert mml_4.nodeName == 'apply'
- assert mml_4.childNodes[0].nodeName == 'lt'
- assert mml_4.childNodes[1].nodeName == 'cn'
- assert mml_4.childNodes[1].childNodes[0].nodeValue == '1'
- assert mml_4.childNodes[2].nodeName == 'ci'
- assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
- def test_content_symbol():
- mml = mp._print(x)
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeValue == 'x'
- del mml
- mml = mp._print(Symbol("x^2"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msup'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
- del mml
- mml = mp._print(Symbol("x__2"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msup'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
- del mml
- mml = mp._print(Symbol("x_2"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msub'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
- del mml
- mml = mp._print(Symbol("x^3_2"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msubsup'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
- assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
- del mml
- mml = mp._print(Symbol("x__3_2"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msubsup'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
- assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
- del mml
- mml = mp._print(Symbol("x_2_a"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msub'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
- 0].nodeValue == '2'
- assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
- assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
- 0].nodeValue == ' '
- assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
- 0].nodeValue == 'a'
- del mml
- mml = mp._print(Symbol("x^2^a"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msup'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
- 0].nodeValue == '2'
- assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
- assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
- 0].nodeValue == ' '
- assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
- 0].nodeValue == 'a'
- del mml
- mml = mp._print(Symbol("x__2__a"))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeName == 'mml:msup'
- assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
- 0].nodeValue == '2'
- assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
- assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
- 0].nodeValue == ' '
- assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
- assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
- 0].nodeValue == 'a'
- del mml
- def test_content_mathml_greek():
- mml = mp._print(Symbol('alpha'))
- assert mml.nodeName == 'ci'
- assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}'
- assert mp.doprint(Symbol('alpha')) == '<ci>α</ci>'
- assert mp.doprint(Symbol('beta')) == '<ci>β</ci>'
- assert mp.doprint(Symbol('gamma')) == '<ci>γ</ci>'
- assert mp.doprint(Symbol('delta')) == '<ci>δ</ci>'
- assert mp.doprint(Symbol('epsilon')) == '<ci>ε</ci>'
- assert mp.doprint(Symbol('zeta')) == '<ci>ζ</ci>'
- assert mp.doprint(Symbol('eta')) == '<ci>η</ci>'
- assert mp.doprint(Symbol('theta')) == '<ci>θ</ci>'
- assert mp.doprint(Symbol('iota')) == '<ci>ι</ci>'
- assert mp.doprint(Symbol('kappa')) == '<ci>κ</ci>'
- assert mp.doprint(Symbol('lambda')) == '<ci>λ</ci>'
- assert mp.doprint(Symbol('mu')) == '<ci>μ</ci>'
- assert mp.doprint(Symbol('nu')) == '<ci>ν</ci>'
- assert mp.doprint(Symbol('xi')) == '<ci>ξ</ci>'
- assert mp.doprint(Symbol('omicron')) == '<ci>ο</ci>'
- assert mp.doprint(Symbol('pi')) == '<ci>π</ci>'
- assert mp.doprint(Symbol('rho')) == '<ci>ρ</ci>'
- assert mp.doprint(Symbol('varsigma')) == '<ci>ς</ci>'
- assert mp.doprint(Symbol('sigma')) == '<ci>σ</ci>'
- assert mp.doprint(Symbol('tau')) == '<ci>τ</ci>'
- assert mp.doprint(Symbol('upsilon')) == '<ci>υ</ci>'
- assert mp.doprint(Symbol('phi')) == '<ci>φ</ci>'
- assert mp.doprint(Symbol('chi')) == '<ci>χ</ci>'
- assert mp.doprint(Symbol('psi')) == '<ci>ψ</ci>'
- assert mp.doprint(Symbol('omega')) == '<ci>ω</ci>'
- assert mp.doprint(Symbol('Alpha')) == '<ci>Α</ci>'
- assert mp.doprint(Symbol('Beta')) == '<ci>Β</ci>'
- assert mp.doprint(Symbol('Gamma')) == '<ci>Γ</ci>'
- assert mp.doprint(Symbol('Delta')) == '<ci>Δ</ci>'
- assert mp.doprint(Symbol('Epsilon')) == '<ci>Ε</ci>'
- assert mp.doprint(Symbol('Zeta')) == '<ci>Ζ</ci>'
- assert mp.doprint(Symbol('Eta')) == '<ci>Η</ci>'
- assert mp.doprint(Symbol('Theta')) == '<ci>Θ</ci>'
- assert mp.doprint(Symbol('Iota')) == '<ci>Ι</ci>'
- assert mp.doprint(Symbol('Kappa')) == '<ci>Κ</ci>'
- assert mp.doprint(Symbol('Lambda')) == '<ci>Λ</ci>'
- assert mp.doprint(Symbol('Mu')) == '<ci>Μ</ci>'
- assert mp.doprint(Symbol('Nu')) == '<ci>Ν</ci>'
- assert mp.doprint(Symbol('Xi')) == '<ci>Ξ</ci>'
- assert mp.doprint(Symbol('Omicron')) == '<ci>Ο</ci>'
- assert mp.doprint(Symbol('Pi')) == '<ci>Π</ci>'
- assert mp.doprint(Symbol('Rho')) == '<ci>Ρ</ci>'
- assert mp.doprint(Symbol('Sigma')) == '<ci>Σ</ci>'
- assert mp.doprint(Symbol('Tau')) == '<ci>Τ</ci>'
- assert mp.doprint(Symbol('Upsilon')) == '<ci>Υ</ci>'
- assert mp.doprint(Symbol('Phi')) == '<ci>Φ</ci>'
- assert mp.doprint(Symbol('Chi')) == '<ci>Χ</ci>'
- assert mp.doprint(Symbol('Psi')) == '<ci>Ψ</ci>'
- assert mp.doprint(Symbol('Omega')) == '<ci>Ω</ci>'
- def test_content_mathml_order():
- expr = x**3 + x**2*y + 3*x*y**3 + y**4
- mp = MathMLContentPrinter({'order': 'lex'})
- mml = mp._print(expr)
- assert mml.childNodes[1].childNodes[0].nodeName == 'power'
- assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x'
- assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3'
- assert mml.childNodes[4].childNodes[0].nodeName == 'power'
- assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y'
- assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4'
- mp = MathMLContentPrinter({'order': 'rev-lex'})
- mml = mp._print(expr)
- assert mml.childNodes[1].childNodes[0].nodeName == 'power'
- assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y'
- assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4'
- assert mml.childNodes[4].childNodes[0].nodeName == 'power'
- assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x'
- assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3'
- def test_content_settings():
- raises(TypeError, lambda: mathml(x, method="garbage"))
- def test_content_mathml_logic():
- assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>'
- assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>'
- assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>'
- assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>'
- assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>'
- def test_content_finite_sets():
- assert mathml(FiniteSet(a)) == '<set><ci>a</ci></set>'
- assert mathml(FiniteSet(a, b)) == '<set><ci>a</ci><ci>b</ci></set>'
- assert mathml(FiniteSet(FiniteSet(a, b), c)) == \
- '<set><ci>c</ci><set><ci>a</ci><ci>b</ci></set></set>'
- A = FiniteSet(a)
- B = FiniteSet(b)
- C = FiniteSet(c)
- D = FiniteSet(d)
- U1 = Union(A, B, evaluate=False)
- U2 = Union(C, D, evaluate=False)
- I1 = Intersection(A, B, evaluate=False)
- I2 = Intersection(C, D, evaluate=False)
- C1 = Complement(A, B, evaluate=False)
- C2 = Complement(C, D, evaluate=False)
- # XXX ProductSet does not support evaluate keyword
- P1 = ProductSet(A, B)
- P2 = ProductSet(C, D)
- assert mathml(U1) == \
- '<apply><union/><set><ci>a</ci></set><set><ci>b</ci></set></apply>'
- assert mathml(I1) == \
- '<apply><intersect/><set><ci>a</ci></set><set><ci>b</ci></set>' \
- '</apply>'
- assert mathml(C1) == \
- '<apply><setdiff/><set><ci>a</ci></set><set><ci>b</ci></set></apply>'
- assert mathml(P1) == \
- '<apply><cartesianproduct/><set><ci>a</ci></set><set><ci>b</ci>' \
- '</set></apply>'
- assert mathml(Intersection(A, U2, evaluate=False)) == \
- '<apply><intersect/><set><ci>a</ci></set><apply><union/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(Intersection(U1, U2, evaluate=False)) == \
- '<apply><intersect/><apply><union/><set><ci>a</ci></set><set>' \
- '<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- # XXX Does the parenthesis appear correctly for these examples in mathjax?
- assert mathml(Intersection(C1, C2, evaluate=False)) == \
- '<apply><intersect/><apply><setdiff/><set><ci>a</ci></set><set>' \
- '<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(Intersection(P1, P2, evaluate=False)) == \
- '<apply><intersect/><apply><cartesianproduct/><set><ci>a</ci></set>' \
- '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(Union(A, I2, evaluate=False)) == \
- '<apply><union/><set><ci>a</ci></set><apply><intersect/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(Union(I1, I2, evaluate=False)) == \
- '<apply><union/><apply><intersect/><set><ci>a</ci></set><set>' \
- '<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(Union(C1, C2, evaluate=False)) == \
- '<apply><union/><apply><setdiff/><set><ci>a</ci></set><set>' \
- '<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(Union(P1, P2, evaluate=False)) == \
- '<apply><union/><apply><cartesianproduct/><set><ci>a</ci></set>' \
- '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(Complement(A, C2, evaluate=False)) == \
- '<apply><setdiff/><set><ci>a</ci></set><apply><setdiff/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(Complement(U1, U2, evaluate=False)) == \
- '<apply><setdiff/><apply><union/><set><ci>a</ci></set><set>' \
- '<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(Complement(I1, I2, evaluate=False)) == \
- '<apply><setdiff/><apply><intersect/><set><ci>a</ci></set><set>' \
- '<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(Complement(P1, P2, evaluate=False)) == \
- '<apply><setdiff/><apply><cartesianproduct/><set><ci>a</ci></set>' \
- '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(ProductSet(A, P2)) == \
- '<apply><cartesianproduct/><set><ci>a</ci></set>' \
- '<apply><cartesianproduct/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(ProductSet(U1, U2)) == \
- '<apply><cartesianproduct/><apply><union/><set><ci>a</ci></set>' \
- '<set><ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
- '<set><ci>d</ci></set></apply></apply>'
- assert mathml(ProductSet(I1, I2)) == \
- '<apply><cartesianproduct/><apply><intersect/><set><ci>a</ci></set>' \
- '<set><ci>b</ci></set></apply><apply><intersect/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- assert mathml(ProductSet(C1, C2)) == \
- '<apply><cartesianproduct/><apply><setdiff/><set><ci>a</ci></set>' \
- '<set><ci>b</ci></set></apply><apply><setdiff/><set>' \
- '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
- def test_presentation_printmethod():
- assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>'
- assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>'
- assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>'
- assert mpp.doprint(x**-2) == \
- '<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>'
- assert mpp.doprint(2*x) == \
- '<mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow>'
- def test_presentation_mathml_core():
- mml_1 = mpp._print(1 + x)
- assert mml_1.nodeName == 'mrow'
- nodes = mml_1.childNodes
- assert len(nodes) == 3
- assert nodes[0].nodeName in ['mi', 'mn']
- assert nodes[1].nodeName == 'mo'
- if nodes[0].nodeName == 'mn':
- assert nodes[0].childNodes[0].nodeValue == '1'
- assert nodes[2].childNodes[0].nodeValue == 'x'
- else:
- assert nodes[0].childNodes[0].nodeValue == 'x'
- assert nodes[2].childNodes[0].nodeValue == '1'
- mml_2 = mpp._print(x**2)
- assert mml_2.nodeName == 'msup'
- nodes = mml_2.childNodes
- assert nodes[0].childNodes[0].nodeValue == 'x'
- assert nodes[1].childNodes[0].nodeValue == '2'
- mml_3 = mpp._print(2*x)
- assert mml_3.nodeName == 'mrow'
- nodes = mml_3.childNodes
- assert nodes[0].childNodes[0].nodeValue == '2'
- assert nodes[1].childNodes[0].nodeValue == '⁢'
- assert nodes[2].childNodes[0].nodeValue == 'x'
- mml = mpp._print(Float(1.0, 2)*x)
- assert mml.nodeName == 'mrow'
- nodes = mml.childNodes
- assert nodes[0].childNodes[0].nodeValue == '1.0'
- assert nodes[1].childNodes[0].nodeValue == '⁢'
- assert nodes[2].childNodes[0].nodeValue == 'x'
- def test_presentation_mathml_functions():
- mml_1 = mpp._print(sin(x))
- assert mml_1.childNodes[0].childNodes[0
- ].nodeValue == 'sin'
- assert mml_1.childNodes[1].childNodes[0
- ].childNodes[0].nodeValue == 'x'
- mml_2 = mpp._print(diff(sin(x), x, evaluate=False))
- assert mml_2.nodeName == 'mrow'
- assert mml_2.childNodes[0].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
- assert mml_2.childNodes[1].childNodes[1
- ].nodeName == 'mfenced'
- assert mml_2.childNodes[0].childNodes[1
- ].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
- mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False))
- assert mml_3.childNodes[0].nodeName == 'mfrac'
- assert mml_3.childNodes[0].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '∂'
- assert mml_3.childNodes[1].childNodes[0
- ].childNodes[0].nodeValue == 'cos'
- def test_print_derivative():
- f = Function('f')
- d = Derivative(f(x, y, z), x, z, x, z, z, y)
- assert mathml(d) == \
- '<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>'
- assert mathml(d, printer='presentation') == \
- '<mrow><mfrac><mrow><msup><mo>∂</mo><mn>6</mn></msup></mrow><mrow><mo>∂</mo><mi>y</mi><msup><mo>∂</mo><mn>2</mn></msup><mi>z</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi><mo>∂</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>'
- def test_presentation_mathml_limits():
- lim_fun = sin(x)/x
- mml_1 = mpp._print(Limit(lim_fun, x, 0))
- assert mml_1.childNodes[0].nodeName == 'munder'
- assert mml_1.childNodes[0].childNodes[0
- ].childNodes[0].nodeValue == 'lim'
- assert mml_1.childNodes[0].childNodes[1
- ].childNodes[0].childNodes[0
- ].nodeValue == 'x'
- assert mml_1.childNodes[0].childNodes[1
- ].childNodes[1].childNodes[0
- ].nodeValue == '→'
- assert mml_1.childNodes[0].childNodes[1
- ].childNodes[2].childNodes[0
- ].nodeValue == '0'
- def test_presentation_mathml_integrals():
- assert mpp.doprint(Integral(x, (x, 0, 1))) == \
- '<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
- '<mi>x</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
- assert mpp.doprint(Integral(log(x), x)) == \
- '<mrow><mo>∫</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\
- '</mfenced></mrow><mo>ⅆ</mo><mi>x</mi></mrow>'
- assert mpp.doprint(Integral(x*y, x, y)) == \
- '<mrow><mo>∬</mo><mrow><mi>x</mi><mo>⁢</mo>'\
- '<mi>y</mi></mrow><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
- z, w = symbols('z w')
- assert mpp.doprint(Integral(x*y*z, x, y, z)) == \
- '<mrow><mo>∭</mo><mrow><mi>x</mi><mo>⁢</mo>'\
- '<mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo>'\
- '<mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
- assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \
- '<mrow><mo>∫</mo><mo>∫</mo><mo>∫</mo>'\
- '<mo>∫</mo><mrow><mi>w</mi><mo>⁢</mo>'\
- '<mi>x</mi><mo>⁢</mo><mi>y</mi>'\
- '<mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo><mi>w</mi>'\
- '<mo>ⅆ</mo><mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
- assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \
- '<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
- '<mo>∫</mo><mo>∫</mo><mi>x</mi><mo>ⅆ</mo><mi>z</mi>'\
- '<mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
- assert mpp.doprint(Integral(x, (x, 0))) == \
- '<mrow><msup><mo>∫</mo><mn>0</mn></msup><mi>x</mi><mo>ⅆ</mo>'\
- '<mi>x</mi></mrow>'
- def test_presentation_mathml_matrices():
- A = Matrix([1, 2, 3])
- B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
- mll_1 = mpp._print(A)
- assert mll_1.childNodes[0].nodeName == 'mtable'
- assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr'
- assert len(mll_1.childNodes[0].childNodes) == 3
- assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
- assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1
- assert mll_1.childNodes[0].childNodes[0].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '1'
- assert mll_1.childNodes[0].childNodes[1].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '2'
- assert mll_1.childNodes[0].childNodes[2].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '3'
- mll_2 = mpp._print(B)
- assert mll_2.childNodes[0].nodeName == 'mtable'
- assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr'
- assert len(mll_2.childNodes[0].childNodes) == 3
- assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
- assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3
- assert mll_2.childNodes[0].childNodes[0].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '0'
- assert mll_2.childNodes[0].childNodes[0].childNodes[1
- ].childNodes[0].childNodes[0].nodeValue == '5'
- assert mll_2.childNodes[0].childNodes[0].childNodes[2
- ].childNodes[0].childNodes[0].nodeValue == '4'
- assert mll_2.childNodes[0].childNodes[1].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '2'
- assert mll_2.childNodes[0].childNodes[1].childNodes[1
- ].childNodes[0].childNodes[0].nodeValue == '3'
- assert mll_2.childNodes[0].childNodes[1].childNodes[2
- ].childNodes[0].childNodes[0].nodeValue == '1'
- assert mll_2.childNodes[0].childNodes[2].childNodes[0
- ].childNodes[0].childNodes[0].nodeValue == '9'
- assert mll_2.childNodes[0].childNodes[2].childNodes[1
- ].childNodes[0].childNodes[0].nodeValue == '7'
- assert mll_2.childNodes[0].childNodes[2].childNodes[2
- ].childNodes[0].childNodes[0].nodeValue == '9'
- def test_presentation_mathml_sums():
- summand = x
- mml_1 = mpp._print(Sum(summand, (x, 1, 10)))
- assert mml_1.childNodes[0].nodeName == 'munderover'
- assert len(mml_1.childNodes[0].childNodes) == 3
- assert mml_1.childNodes[0].childNodes[0].childNodes[0
- ].nodeValue == '∑'
- assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3
- assert mml_1.childNodes[0].childNodes[2].childNodes[0
- ].nodeValue == '10'
- assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
- def test_presentation_mathml_add():
- mml = mpp._print(x**5 - x**4 + x)
- assert len(mml.childNodes) == 5
- assert mml.childNodes[0].childNodes[0].childNodes[0
- ].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].childNodes[0
- ].nodeValue == '5'
- assert mml.childNodes[1].childNodes[0].nodeValue == '-'
- assert mml.childNodes[2].childNodes[0].childNodes[0
- ].nodeValue == 'x'
- assert mml.childNodes[2].childNodes[1].childNodes[0
- ].nodeValue == '4'
- assert mml.childNodes[3].childNodes[0].nodeValue == '+'
- assert mml.childNodes[4].childNodes[0].nodeValue == 'x'
- def test_presentation_mathml_Rational():
- mml_1 = mpp._print(Rational(1, 1))
- assert mml_1.nodeName == 'mn'
- mml_2 = mpp._print(Rational(2, 5))
- assert mml_2.nodeName == 'mfrac'
- assert mml_2.childNodes[0].childNodes[0].nodeValue == '2'
- assert mml_2.childNodes[1].childNodes[0].nodeValue == '5'
- def test_presentation_mathml_constants():
- mml = mpp._print(I)
- assert mml.childNodes[0].nodeValue == 'ⅈ'
- mml = mpp._print(E)
- assert mml.childNodes[0].nodeValue == 'ⅇ'
- mml = mpp._print(oo)
- assert mml.childNodes[0].nodeValue == '∞'
- mml = mpp._print(pi)
- assert mml.childNodes[0].nodeValue == 'π'
- assert mathml(hbar, printer='presentation') == '<mi>ℏ</mi>'
- assert mathml(S.TribonacciConstant, printer='presentation'
- ) == '<mi>TribonacciConstant</mi>'
- assert mathml(S.EulerGamma, printer='presentation'
- ) == '<mi>γ</mi>'
- assert mathml(S.GoldenRatio, printer='presentation'
- ) == '<mi>Φ</mi>'
- assert mathml(zoo, printer='presentation') == \
- '<mover><mo>∞</mo><mo>~</mo></mover>'
- assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>'
- def test_presentation_mathml_trig():
- mml = mpp._print(sin(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'sin'
- mml = mpp._print(cos(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'cos'
- mml = mpp._print(tan(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'tan'
- mml = mpp._print(asin(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin'
- mml = mpp._print(acos(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos'
- mml = mpp._print(atan(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan'
- mml = mpp._print(sinh(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh'
- mml = mpp._print(cosh(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh'
- mml = mpp._print(tanh(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh'
- mml = mpp._print(asinh(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh'
- mml = mpp._print(atanh(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh'
- mml = mpp._print(acosh(x))
- assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh'
- def test_presentation_mathml_relational():
- mml_1 = mpp._print(Eq(x, 1))
- assert len(mml_1.childNodes) == 3
- assert mml_1.childNodes[0].nodeName == 'mi'
- assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml_1.childNodes[1].nodeName == 'mo'
- assert mml_1.childNodes[1].childNodes[0].nodeValue == '='
- assert mml_1.childNodes[2].nodeName == 'mn'
- assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
- mml_2 = mpp._print(Ne(1, x))
- assert len(mml_2.childNodes) == 3
- assert mml_2.childNodes[0].nodeName == 'mn'
- assert mml_2.childNodes[0].childNodes[0].nodeValue == '1'
- assert mml_2.childNodes[1].nodeName == 'mo'
- assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠'
- assert mml_2.childNodes[2].nodeName == 'mi'
- assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
- mml_3 = mpp._print(Ge(1, x))
- assert len(mml_3.childNodes) == 3
- assert mml_3.childNodes[0].nodeName == 'mn'
- assert mml_3.childNodes[0].childNodes[0].nodeValue == '1'
- assert mml_3.childNodes[1].nodeName == 'mo'
- assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥'
- assert mml_3.childNodes[2].nodeName == 'mi'
- assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
- mml_4 = mpp._print(Lt(1, x))
- assert len(mml_4.childNodes) == 3
- assert mml_4.childNodes[0].nodeName == 'mn'
- assert mml_4.childNodes[0].childNodes[0].nodeValue == '1'
- assert mml_4.childNodes[1].nodeName == 'mo'
- assert mml_4.childNodes[1].childNodes[0].nodeValue == '<'
- assert mml_4.childNodes[2].nodeName == 'mi'
- assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
- def test_presentation_symbol():
- mml = mpp._print(x)
- assert mml.nodeName == 'mi'
- assert mml.childNodes[0].nodeValue == 'x'
- del mml
- mml = mpp._print(Symbol("x^2"))
- assert mml.nodeName == 'msup'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].nodeValue == '2'
- del mml
- mml = mpp._print(Symbol("x__2"))
- assert mml.nodeName == 'msup'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].nodeValue == '2'
- del mml
- mml = mpp._print(Symbol("x_2"))
- assert mml.nodeName == 'msub'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].nodeValue == '2'
- del mml
- mml = mpp._print(Symbol("x^3_2"))
- assert mml.nodeName == 'msubsup'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].nodeValue == '2'
- assert mml.childNodes[2].nodeName == 'mi'
- assert mml.childNodes[2].childNodes[0].nodeValue == '3'
- del mml
- mml = mpp._print(Symbol("x__3_2"))
- assert mml.nodeName == 'msubsup'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].nodeValue == '2'
- assert mml.childNodes[2].nodeName == 'mi'
- assert mml.childNodes[2].childNodes[0].nodeValue == '3'
- del mml
- mml = mpp._print(Symbol("x_2_a"))
- assert mml.nodeName == 'msub'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mrow'
- assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
- assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
- assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
- assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
- del mml
- mml = mpp._print(Symbol("x^2^a"))
- assert mml.nodeName == 'msup'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mrow'
- assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
- assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
- assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
- assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
- del mml
- mml = mpp._print(Symbol("x__2__a"))
- assert mml.nodeName == 'msup'
- assert mml.childNodes[0].nodeName == 'mi'
- assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[1].nodeName == 'mrow'
- assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
- assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
- assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
- assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
- assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
- del mml
- def test_presentation_mathml_greek():
- mml = mpp._print(Symbol('alpha'))
- assert mml.nodeName == 'mi'
- assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}'
- assert mpp.doprint(Symbol('alpha')) == '<mi>α</mi>'
- assert mpp.doprint(Symbol('beta')) == '<mi>β</mi>'
- assert mpp.doprint(Symbol('gamma')) == '<mi>γ</mi>'
- assert mpp.doprint(Symbol('delta')) == '<mi>δ</mi>'
- assert mpp.doprint(Symbol('epsilon')) == '<mi>ε</mi>'
- assert mpp.doprint(Symbol('zeta')) == '<mi>ζ</mi>'
- assert mpp.doprint(Symbol('eta')) == '<mi>η</mi>'
- assert mpp.doprint(Symbol('theta')) == '<mi>θ</mi>'
- assert mpp.doprint(Symbol('iota')) == '<mi>ι</mi>'
- assert mpp.doprint(Symbol('kappa')) == '<mi>κ</mi>'
- assert mpp.doprint(Symbol('lambda')) == '<mi>λ</mi>'
- assert mpp.doprint(Symbol('mu')) == '<mi>μ</mi>'
- assert mpp.doprint(Symbol('nu')) == '<mi>ν</mi>'
- assert mpp.doprint(Symbol('xi')) == '<mi>ξ</mi>'
- assert mpp.doprint(Symbol('omicron')) == '<mi>ο</mi>'
- assert mpp.doprint(Symbol('pi')) == '<mi>π</mi>'
- assert mpp.doprint(Symbol('rho')) == '<mi>ρ</mi>'
- assert mpp.doprint(Symbol('varsigma')) == '<mi>ς</mi>'
- assert mpp.doprint(Symbol('sigma')) == '<mi>σ</mi>'
- assert mpp.doprint(Symbol('tau')) == '<mi>τ</mi>'
- assert mpp.doprint(Symbol('upsilon')) == '<mi>υ</mi>'
- assert mpp.doprint(Symbol('phi')) == '<mi>φ</mi>'
- assert mpp.doprint(Symbol('chi')) == '<mi>χ</mi>'
- assert mpp.doprint(Symbol('psi')) == '<mi>ψ</mi>'
- assert mpp.doprint(Symbol('omega')) == '<mi>ω</mi>'
- assert mpp.doprint(Symbol('Alpha')) == '<mi>Α</mi>'
- assert mpp.doprint(Symbol('Beta')) == '<mi>Β</mi>'
- assert mpp.doprint(Symbol('Gamma')) == '<mi>Γ</mi>'
- assert mpp.doprint(Symbol('Delta')) == '<mi>Δ</mi>'
- assert mpp.doprint(Symbol('Epsilon')) == '<mi>Ε</mi>'
- assert mpp.doprint(Symbol('Zeta')) == '<mi>Ζ</mi>'
- assert mpp.doprint(Symbol('Eta')) == '<mi>Η</mi>'
- assert mpp.doprint(Symbol('Theta')) == '<mi>Θ</mi>'
- assert mpp.doprint(Symbol('Iota')) == '<mi>Ι</mi>'
- assert mpp.doprint(Symbol('Kappa')) == '<mi>Κ</mi>'
- assert mpp.doprint(Symbol('Lambda')) == '<mi>Λ</mi>'
- assert mpp.doprint(Symbol('Mu')) == '<mi>Μ</mi>'
- assert mpp.doprint(Symbol('Nu')) == '<mi>Ν</mi>'
- assert mpp.doprint(Symbol('Xi')) == '<mi>Ξ</mi>'
- assert mpp.doprint(Symbol('Omicron')) == '<mi>Ο</mi>'
- assert mpp.doprint(Symbol('Pi')) == '<mi>Π</mi>'
- assert mpp.doprint(Symbol('Rho')) == '<mi>Ρ</mi>'
- assert mpp.doprint(Symbol('Sigma')) == '<mi>Σ</mi>'
- assert mpp.doprint(Symbol('Tau')) == '<mi>Τ</mi>'
- assert mpp.doprint(Symbol('Upsilon')) == '<mi>Υ</mi>'
- assert mpp.doprint(Symbol('Phi')) == '<mi>Φ</mi>'
- assert mpp.doprint(Symbol('Chi')) == '<mi>Χ</mi>'
- assert mpp.doprint(Symbol('Psi')) == '<mi>Ψ</mi>'
- assert mpp.doprint(Symbol('Omega')) == '<mi>Ω</mi>'
- def test_presentation_mathml_order():
- expr = x**3 + x**2*y + 3*x*y**3 + y**4
- mp = MathMLPresentationPrinter({'order': 'lex'})
- mml = mp._print(expr)
- assert mml.childNodes[0].nodeName == 'msup'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3'
- assert mml.childNodes[6].nodeName == 'msup'
- assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y'
- assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4'
- mp = MathMLPresentationPrinter({'order': 'rev-lex'})
- mml = mp._print(expr)
- assert mml.childNodes[0].nodeName == 'msup'
- assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y'
- assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4'
- assert mml.childNodes[6].nodeName == 'msup'
- assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x'
- assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3'
- def test_print_intervals():
- a = Symbol('a', real=True)
- assert mpp.doprint(Interval(0, a)) == \
- '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
- assert mpp.doprint(Interval(0, a, False, False)) == \
- '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
- assert mpp.doprint(Interval(0, a, True, False)) == \
- '<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
- assert mpp.doprint(Interval(0, a, False, True)) == \
- '<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
- assert mpp.doprint(Interval(0, a, True, True)) == \
- '<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
- def test_print_tuples():
- assert mpp.doprint(Tuple(0,)) == \
- '<mrow><mfenced><mn>0</mn></mfenced></mrow>'
- assert mpp.doprint(Tuple(0, a)) == \
- '<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>'
- assert mpp.doprint(Tuple(0, a, a)) == \
- '<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>'
- assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \
- '<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>'
- assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \
- '<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\
- '</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>'
- def test_print_re_im():
- assert mpp.doprint(re(x)) == \
- '<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(im(x)) == \
- '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(re(x + 1)) == \
- '<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\
- '</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>'
- assert mpp.doprint(im(x + 1)) == \
- '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_Abs():
- assert mpp.doprint(Abs(x)) == \
- '<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(Abs(x + 1)) == \
- '<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>'
- def test_print_Determinant():
- assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \
- '<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>'
- def test_presentation_settings():
- raises(TypeError, lambda: mathml(x, printer='presentation',
- method="garbage"))
- def test_toprettyxml_hooking():
- # test that the patch doesn't influence the behavior of the standard
- # library
- import xml.dom.minidom
- doc1 = xml.dom.minidom.parseString(
- "<apply><plus/><ci>x</ci><cn>1</cn></apply>")
- doc2 = xml.dom.minidom.parseString(
- "<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>")
- prettyxml_old1 = doc1.toprettyxml()
- prettyxml_old2 = doc2.toprettyxml()
- mp.apply_patch()
- mp.restore_patch()
- assert prettyxml_old1 == doc1.toprettyxml()
- assert prettyxml_old2 == doc2.toprettyxml()
- def test_print_domains():
- from sympy.sets import Integers, Naturals, Naturals0, Reals, Complexes
- assert mpp.doprint(Complexes) == '<mi mathvariant="normal">ℂ</mi>'
- assert mpp.doprint(Integers) == '<mi mathvariant="normal">ℤ</mi>'
- assert mpp.doprint(Naturals) == '<mi mathvariant="normal">ℕ</mi>'
- assert mpp.doprint(Naturals0) == \
- '<msub><mi mathvariant="normal">ℕ</mi><mn>0</mn></msub>'
- assert mpp.doprint(Reals) == '<mi mathvariant="normal">ℝ</mi>'
- def test_print_expression_with_minus():
- assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>'
- assert mpp.doprint(-x/y) == \
- '<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>'
- assert mpp.doprint(-Rational(1, 2)) == \
- '<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>'
- def test_print_AssocOp():
- from sympy.core.operations import AssocOp
- class TestAssocOp(AssocOp):
- identity = 0
- expr = TestAssocOp(1, 2)
- assert mpp.doprint(expr) == \
- '<mrow><mi>testassocop</mi><mn>1</mn><mn>2</mn></mrow>'
- def test_print_basic():
- expr = Basic(S(1), S(2))
- assert mpp.doprint(expr) == \
- '<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>'
- assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>'
- def test_mat_delim_print():
- expr = Matrix([[1, 2], [3, 4]])
- assert mathml(expr, printer='presentation', mat_delim='[') == \
- '<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\
- '<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\
- '</mtd></mtr></mtable></mfenced>'
- assert mathml(expr, printer='presentation', mat_delim='(') == \
- '<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\
- '</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>'
- assert mathml(expr, printer='presentation', mat_delim='') == \
- '<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\
- '<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>'
- def test_ln_notation_print():
- expr = log(x)
- assert mathml(expr, printer='presentation') == \
- '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(expr, printer='presentation', ln_notation=False) == \
- '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(expr, printer='presentation', ln_notation=True) == \
- '<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>'
- def test_mul_symbol_print():
- expr = x * y
- assert mathml(expr, printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
- assert mathml(expr, printer='presentation', mul_symbol=None) == \
- '<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
- assert mathml(expr, printer='presentation', mul_symbol='dot') == \
- '<mrow><mi>x</mi><mo>·</mo><mi>y</mi></mrow>'
- assert mathml(expr, printer='presentation', mul_symbol='ldot') == \
- '<mrow><mi>x</mi><mo>․</mo><mi>y</mi></mrow>'
- assert mathml(expr, printer='presentation', mul_symbol='times') == \
- '<mrow><mi>x</mi><mo>×</mo><mi>y</mi></mrow>'
- def test_print_lerchphi():
- assert mpp.doprint(lerchphi(1, 2, 3)) == \
- '<mrow><mi>Φ</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>'
- def test_print_polylog():
- assert mp.doprint(polylog(x, y)) == \
- '<apply><polylog/><ci>x</ci><ci>y</ci></apply>'
- assert mpp.doprint(polylog(x, y)) == \
- '<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
- def test_print_set_frozenset():
- f = frozenset({1, 5, 3})
- assert mpp.doprint(f) == \
- '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>'
- s = set({1, 2, 3})
- assert mpp.doprint(s) == \
- '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
- def test_print_FiniteSet():
- f1 = FiniteSet(x, 1, 3)
- assert mpp.doprint(f1) == \
- '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>'
- def test_print_LambertW():
- assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
- def test_print_EmptySet():
- assert mpp.doprint(S.EmptySet) == '<mo>∅</mo>'
- def test_print_UniversalSet():
- assert mpp.doprint(S.UniversalSet) == '<mo>𝕌</mo>'
- def test_print_spaces():
- assert mpp.doprint(HilbertSpace()) == '<mi>ℋ</mi>'
- assert mpp.doprint(ComplexSpace(2)) == '<msup>𝒞<mn>2</mn></msup>'
- assert mpp.doprint(FockSpace()) == '<mi>ℱ</mi>'
- def test_print_constants():
- assert mpp.doprint(hbar) == '<mi>ℏ</mi>'
- assert mpp.doprint(S.TribonacciConstant) == '<mi>TribonacciConstant</mi>'
- assert mpp.doprint(S.GoldenRatio) == '<mi>Φ</mi>'
- assert mpp.doprint(S.EulerGamma) == '<mi>γ</mi>'
- def test_print_Contains():
- assert mpp.doprint(Contains(x, S.Naturals)) == \
- '<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></mrow>'
- def test_print_Dagger():
- assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>†</msup>'
- def test_print_SetOp():
- f1 = FiniteSet(x, 1, 3)
- f2 = FiniteSet(y, 2, 4)
- prntr = lambda x: mathml(x, printer='presentation')
- assert prntr(Union(f1, f2, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
- '</mfenced><mo>∪</mo><mfenced close="}" open="{"><mn>2</mn>'\
- '<mn>4</mn><mi>y</mi></mfenced></mrow>'
- assert prntr(Intersection(f1, f2, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
- '</mfenced><mo>∩</mo><mfenced close="}" open="{"><mn>2</mn>'\
- '<mn>4</mn><mi>y</mi></mfenced></mrow>'
- assert prntr(Complement(f1, f2, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
- '</mfenced><mo>∖</mo><mfenced close="}" open="{"><mn>2</mn>'\
- '<mn>4</mn><mi>y</mi></mfenced></mrow>'
- assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
- '</mfenced><mo>∆</mo><mfenced close="}" open="{"><mn>2</mn>'\
- '<mn>4</mn><mi>y</mi></mfenced></mrow>'
- A = FiniteSet(a)
- C = FiniteSet(c)
- D = FiniteSet(d)
- U1 = Union(C, D, evaluate=False)
- I1 = Intersection(C, D, evaluate=False)
- C1 = Complement(C, D, evaluate=False)
- D1 = SymmetricDifference(C, D, evaluate=False)
- # XXX ProductSet does not support evaluate keyword
- P1 = ProductSet(C, D)
- assert prntr(Union(A, I1, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
- '<mo>∪</mo><mfenced><mrow><mfenced close="}" open="{">' \
- '<mi>c</mi></mfenced><mo>∩</mo><mfenced close="}" open="{">' \
- '<mi>d</mi></mfenced></mrow></mfenced></mrow>'
- assert prntr(Intersection(A, C1, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
- '<mo>∩</mo><mfenced><mrow><mfenced close="}" open="{">' \
- '<mi>c</mi></mfenced><mo>∖</mo><mfenced close="}" open="{">' \
- '<mi>d</mi></mfenced></mrow></mfenced></mrow>'
- assert prntr(Complement(A, D1, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
- '<mo>∖</mo><mfenced><mrow><mfenced close="}" open="{">' \
- '<mi>c</mi></mfenced><mo>∆</mo><mfenced close="}" open="{">' \
- '<mi>d</mi></mfenced></mrow></mfenced></mrow>'
- assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \
- '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
- '<mo>∆</mo><mfenced><mrow><mfenced close="}" open="{">' \
- '<mi>c</mi></mfenced><mo>×</mo><mfenced close="}" open="{">' \
- '<mi>d</mi></mfenced></mrow></mfenced></mrow>'
- assert prntr(ProductSet(A, U1)) == \
- '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
- '<mo>×</mo><mfenced><mrow><mfenced close="}" open="{">' \
- '<mi>c</mi></mfenced><mo>∪</mo><mfenced close="}" open="{">' \
- '<mi>d</mi></mfenced></mrow></mfenced></mrow>'
- def test_print_logic():
- assert mpp.doprint(And(x, y)) == \
- '<mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow>'
- assert mpp.doprint(Or(x, y)) == \
- '<mrow><mi>x</mi><mo>∨</mo><mi>y</mi></mrow>'
- assert mpp.doprint(Xor(x, y)) == \
- '<mrow><mi>x</mi><mo>⊻</mo><mi>y</mi></mrow>'
- assert mpp.doprint(Implies(x, y)) == \
- '<mrow><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow>'
- assert mpp.doprint(Equivalent(x, y)) == \
- '<mrow><mi>x</mi><mo>⇔</mo><mi>y</mi></mrow>'
- assert mpp.doprint(And(Eq(x, y), x > 4)) == \
- '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∧</mo>'\
- '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
- assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \
- '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
- '<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\
- '</mrow><mo>∧</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>'
- assert mpp.doprint(Or(Eq(x, y), x > 4)) == \
- '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∨</mo>'\
- '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
- assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \
- '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
- '<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\
- '<mn>1</mn></mrow></mrow><mo>∨</mo><mrow><mi>y</mi><mo><</mo>'\
- '<mn>3</mn></mrow></mrow></mfenced></mrow>'
- assert mpp.doprint(Not(x)) == '<mrow><mo>¬</mo><mi>x</mi></mrow>'
- assert mpp.doprint(Not(And(x, y))) == \
- '<mrow><mo>¬</mo><mfenced><mrow><mi>x</mi><mo>∧</mo>'\
- '<mi>y</mi></mrow></mfenced></mrow>'
- def test_root_notation_print():
- assert mathml(x**(S.One/3), printer='presentation') == \
- '<mroot><mi>x</mi><mn>3</mn></mroot>'
- assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\
- '<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>'
- assert mathml(x**(S.One/3), printer='content') == \
- '<apply><root/><degree><cn>3</cn></degree><ci>x</ci></apply>'
- assert mathml(x**(S.One/3), printer='content', root_notation=False) == \
- '<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>'
- assert mathml(x**(Rational(-1, 3)), printer='presentation') == \
- '<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>'
- assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \
- == '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>'
- def test_fold_frac_powers_print():
- expr = x ** Rational(5, 2)
- assert mathml(expr, printer='presentation') == \
- '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
- assert mathml(expr, printer='presentation', fold_frac_powers=True) == \
- '<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>'
- assert mathml(expr, printer='presentation', fold_frac_powers=False) == \
- '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
- def test_fold_short_frac_print():
- expr = Rational(2, 5)
- assert mathml(expr, printer='presentation') == \
- '<mfrac><mn>2</mn><mn>5</mn></mfrac>'
- assert mathml(expr, printer='presentation', fold_short_frac=True) == \
- '<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>'
- assert mathml(expr, printer='presentation', fold_short_frac=False) == \
- '<mfrac><mn>2</mn><mn>5</mn></mfrac>'
- def test_print_factorials():
- assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>'
- assert mpp.doprint(factorial(x + 1)) == \
- '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>'
- assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>'
- assert mpp.doprint(factorial2(x + 1)) == \
- '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>'
- assert mpp.doprint(binomial(x, y)) == \
- '<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>'
- assert mpp.doprint(binomial(4, x + y)) == \
- '<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\
- '<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>'
- def test_print_floor():
- expr = floor(x)
- assert mathml(expr, printer='presentation') == \
- '<mrow><mfenced close="⌋" open="⌊"><mi>x</mi></mfenced></mrow>'
- def test_print_ceiling():
- expr = ceiling(x)
- assert mathml(expr, printer='presentation') == \
- '<mrow><mfenced close="⌉" open="⌈"><mi>x</mi></mfenced></mrow>'
- def test_print_Lambda():
- expr = Lambda(x, x+1)
- assert mathml(expr, printer='presentation') == \
- '<mfenced><mrow><mi>x</mi><mo>↦</mo><mrow><mi>x</mi><mo>+</mo>'\
- '<mn>1</mn></mrow></mrow></mfenced>'
- expr = Lambda((x, y), x + y)
- assert mathml(expr, printer='presentation') == \
- '<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\
- '<mo>↦</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>'
- def test_print_conjugate():
- assert mpp.doprint(conjugate(x)) == \
- '<menclose notation="top"><mi>x</mi></menclose>'
- assert mpp.doprint(conjugate(x + 1)) == \
- '<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>'
- def test_print_AccumBounds():
- a = Symbol('a', real=True)
- assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mn>1</mn></mfenced>'
- assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mi>a</mi></mfenced>'
- assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="⟩" open="⟨"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>'
- def test_print_Float():
- assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
- assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>'
- assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
- assert mpp.doprint(Float(1.0*oo)) == '<mi>∞</mi>'
- assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>∞</mi></mrow>'
- def test_print_different_functions():
- assert mpp.doprint(gamma(x)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mpp.doprint(zeta(x)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(zeta(x, y)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>η</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>Κ</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(totient(x)) == '<mrow><mi>ϕ</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>λ</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(primenu(x)) == '<mrow><mi>ν</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(primeomega(x)) == '<mrow><mi>Ω</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mpp.doprint(Heaviside(x)) == '<mrow><mi>Θ</mi><mfenced><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced></mrow>'
- def test_mathml_builtins():
- assert mpp.doprint(None) == '<mi>None</mi>'
- assert mpp.doprint(true) == '<mi>True</mi>'
- assert mpp.doprint(false) == '<mi>False</mi>'
- def test_mathml_Range():
- assert mpp.doprint(Range(1, 51)) == \
- '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>…</mi><mn>50</mn></mfenced>'
- assert mpp.doprint(Range(1, 4)) == \
- '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
- assert mpp.doprint(Range(0, 3, 1)) == \
- '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>'
- assert mpp.doprint(Range(0, 30, 1)) == \
- '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>…</mi><mn>29</mn></mfenced>'
- assert mpp.doprint(Range(30, 1, -1)) == \
- '<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>…</mi>'\
- '<mn>2</mn></mfenced>'
- assert mpp.doprint(Range(0, oo, 2)) == \
- '<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>…</mi></mfenced>'
- assert mpp.doprint(Range(oo, -2, -2)) == \
- '<mfenced close="}" open="{"><mi>…</mi><mn>2</mn><mn>0</mn></mfenced>'
- assert mpp.doprint(Range(-2, -oo, -1)) == \
- '<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>…</mi></mfenced>'
- def test_print_exp():
- assert mpp.doprint(exp(x)) == \
- '<msup><mi>ⅇ</mi><mi>x</mi></msup>'
- assert mpp.doprint(exp(1) + exp(2)) == \
- '<mrow><mi>ⅇ</mi><mo>+</mo><msup><mi>ⅇ</mi><mn>2</mn></msup></mrow>'
- def test_print_MinMax():
- assert mpp.doprint(Min(x, y)) == \
- '<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mpp.doprint(Min(x, 2, x**3)) == \
- '<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
- '<mn>3</mn></msup></mfenced></mrow>'
- assert mpp.doprint(Max(x, y)) == \
- '<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mpp.doprint(Max(x, 2, x**3)) == \
- '<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
- '<mn>3</mn></msup></mfenced></mrow>'
- def test_mathml_presentation_numbers():
- n = Symbol('n')
- assert mathml(catalan(n), printer='presentation') == \
- '<msub><mi>C</mi><mi>n</mi></msub>'
- assert mathml(bernoulli(n), printer='presentation') == \
- '<msub><mi>B</mi><mi>n</mi></msub>'
- assert mathml(bell(n), printer='presentation') == \
- '<msub><mi>B</mi><mi>n</mi></msub>'
- assert mathml(euler(n), printer='presentation') == \
- '<msub><mi>E</mi><mi>n</mi></msub>'
- assert mathml(fibonacci(n), printer='presentation') == \
- '<msub><mi>F</mi><mi>n</mi></msub>'
- assert mathml(lucas(n), printer='presentation') == \
- '<msub><mi>L</mi><mi>n</mi></msub>'
- assert mathml(tribonacci(n), printer='presentation') == \
- '<msub><mi>T</mi><mi>n</mi></msub>'
- assert mathml(bernoulli(n, x), printer='presentation') == \
- '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(bell(n, x), printer='presentation') == \
- '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(euler(n, x), printer='presentation') == \
- '<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(fibonacci(n, x), printer='presentation') == \
- '<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(tribonacci(n, x), printer='presentation') == \
- '<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_mathml_presentation_mathieu():
- assert mathml(mathieuc(x, y, z), printer='presentation') == \
- '<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
- assert mathml(mathieus(x, y, z), printer='presentation') == \
- '<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
- assert mathml(mathieucprime(x, y, z), printer='presentation') == \
- '<mrow><mi>C′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
- assert mathml(mathieusprime(x, y, z), printer='presentation') == \
- '<mrow><mi>S′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
- def test_mathml_presentation_stieltjes():
- assert mathml(stieltjes(n), printer='presentation') == \
- '<msub><mi>γ</mi><mi>n</mi></msub>'
- assert mathml(stieltjes(n, x), printer='presentation') == \
- '<mrow><msub><mi>γ</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_matrix_symbol():
- A = MatrixSymbol('A', 1, 2)
- assert mpp.doprint(A) == '<mi>A</mi>'
- assert mp.doprint(A) == '<ci>A</ci>'
- assert mathml(A, printer='presentation', mat_symbol_style="bold") == \
- '<mi mathvariant="bold">A</mi>'
- # No effect in content printer
- assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>'
- def test_print_hadamard():
- from sympy.matrices.expressions import HadamardProduct
- from sympy.matrices.expressions import Transpose
- X = MatrixSymbol('X', 2, 2)
- Y = MatrixSymbol('Y', 2, 2)
- assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \
- '<mrow>' \
- '<mi>X</mi>' \
- '<mo>∘</mo>' \
- '<msup><mi>Y</mi><mn>2</mn></msup>' \
- '</mrow>'
- assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \
- '<mrow>' \
- '<mfenced>' \
- '<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
- '</mfenced>' \
- '<mo>⁢</mo><mi>Y</mi>' \
- '</mrow>'
- assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \
- '<mrow>' \
- '<mi>X</mi><mo>∘</mo>' \
- '<mi>Y</mi><mo>∘</mo>' \
- '<mi>Y</mi>' \
- '</mrow>'
- assert mathml(
- Transpose(HadamardProduct(X, Y)), printer="presentation") == \
- '<msup>' \
- '<mfenced>' \
- '<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
- '</mfenced>' \
- '<mo>T</mo>' \
- '</msup>'
- def test_print_random_symbol():
- R = RandomSymbol(Symbol('R'))
- assert mpp.doprint(R) == '<mi>R</mi>'
- assert mp.doprint(R) == '<ci>R</ci>'
- def test_print_IndexedBase():
- assert mathml(IndexedBase(a)[b], printer='presentation') == \
- '<msub><mi>a</mi><mi>b</mi></msub>'
- assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \
- '<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>'
- assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e),
- printer='presentation') == \
- '<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>⁢'\
- '</mo><msub><mi>c</mi><mi>d</mi></msub><mo>⁢</mo><mi>e</mi></mrow>'
- def test_print_Indexed():
- assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>'
- assert mathml(IndexedBase(a/b), printer='presentation') == \
- '<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>'
- assert mathml(IndexedBase((a, b)), printer='presentation') == \
- '<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>'
- def test_print_MatrixElement():
- i, j = symbols('i j')
- A = MatrixSymbol('A', i, j)
- assert mathml(A[0,0],printer = 'presentation') == \
- '<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>'
- assert mathml(A[i,j], printer = 'presentation') == \
- '<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>'
- assert mathml(A[i*j,0], printer = 'presentation') == \
- '<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>⁢</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>'
- def test_print_Vector():
- ACS = CoordSys3D('A')
- assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \
- '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>×</mo><mfenced><mrow>'\
- '<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
- '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
- '</mrow></mfenced><mo>⁢</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
- '<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\
- 'A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \
- '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow>'
- assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
- '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \
- '<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\
- '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\
- '<mo>×</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\
- '<mo>⁢</mo><msub><mover><mi mathvariant="bold">i</mi>'\
- '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
- '</mfenced></mrow></mrow>'
- assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \
- '<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
- '<mn>3</mn><mo>⁢</mo><msub>'\
- '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
- '</mrow></mfenced><mo>⁢</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \
- '<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
- '<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
- '</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
- '<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
- '<mo>×</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
- '<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
- '<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
- '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
- '</mfenced></mrow></mfenced></mrow>'
- assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
- '<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><msub><mover>'\
- '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
- '<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
- '</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
- '<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \
- '<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><mfenced><mrow>'\
- '<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
- '</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
- '<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
- '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
- '<mo>·</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
- '<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
- '<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
- '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
- '</mfenced></mrow></mfenced></mrow>'
- assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
- '<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><msub><mover>'\
- '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
- '<mn>3</mn><mo>⁢</mo><msub>'\
- '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
- '<mo>⁢</mo><mi>x</mi></mrow></mfenced>'\
- '<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
- '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \
- '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
- '<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
- '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
- '</mrow></mfenced><mo>⁢</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
- '<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \
- '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow>'
- assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \
- '<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
- '<mfenced><mi>x</mi></mfenced><mo>⁢</mo><msub><mover>'\
- '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
- '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
- '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
- assert mathml(Gradient(ACS.x), printer='presentation') == \
- '<mrow><mo>∇</mo><msub><mi mathvariant="bold">x</mi>'\
- '<mi mathvariant="bold">A</mi></msub></mrow>'
- assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \
- '<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
- 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
- '<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
- assert mathml(x*Gradient(ACS.x), printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
- '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
- '</msub></mrow></mfenced></mrow>'
- assert mathml(Gradient(x*ACS.x), printer='presentation') == \
- '<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
- 'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
- '<mi>x</mi></mrow></mfenced></mrow>'
- assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \
- '<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>'
- assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \
- '<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\
- '<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub>'\
- '<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>'
- assert mathml(Laplacian(ACS.x), printer='presentation') == \
- '<mrow><mo>∆</mo><msub><mi mathvariant="bold">x</mi>'\
- '<mi mathvariant="bold">A</mi></msub></mrow>'
- assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \
- '<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
- 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
- '<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
- '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
- assert mathml(x*Laplacian(ACS.x), printer='presentation') == \
- '<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∆</mo>'\
- '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
- '</msub></mrow></mfenced></mrow>'
- assert mathml(Laplacian(x*ACS.x), printer='presentation') == \
- '<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
- 'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
- '<mi>x</mi></mrow></mfenced></mrow>'
- def test_print_elliptic_f():
- assert mathml(elliptic_f(x, y), printer = 'presentation') == \
- '<mrow><mi>𝖥</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \
- '<mrow><mi>𝖥</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>'
- def test_print_elliptic_e():
- assert mathml(elliptic_e(x), printer = 'presentation') == \
- '<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>'
- assert mathml(elliptic_e(x, y), printer = 'presentation') == \
- '<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
- def test_print_elliptic_pi():
- assert mathml(elliptic_pi(x, y), printer = 'presentation') == \
- '<mrow><mi>𝛱</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
- assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \
- '<mrow><mi>𝛱</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
- def test_print_Ei():
- assert mathml(Ei(x), printer = 'presentation') == \
- '<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>'
- assert mathml(Ei(x**y), printer = 'presentation') == \
- '<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>'
- def test_print_expint():
- assert mathml(expint(x, y), printer = 'presentation') == \
- '<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
- assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \
- '<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>'
- def test_print_jacobi():
- assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \
- '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_gegenbauer():
- assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \
- '<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_chebyshevt():
- assert mathml(chebyshevt(n, x), printer = 'presentation') == \
- '<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_chebyshevu():
- assert mathml(chebyshevu(n, x), printer = 'presentation') == \
- '<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_legendre():
- assert mathml(legendre(n, x), printer = 'presentation') == \
- '<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_assoc_legendre():
- assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \
- '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_laguerre():
- assert mathml(laguerre(n, x), printer = 'presentation') == \
- '<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_assoc_laguerre():
- assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \
- '<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
- def test_print_hermite():
- assert mathml(hermite(n, x), printer = 'presentation') == \
- '<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
- def test_mathml_SingularityFunction():
- assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \
- '<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
- '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>'
- assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \
- '<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
- '<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>'
- assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \
- '<msup><mfenced close="⟩" open="⟨"><mi>x</mi></mfenced>' \
- '<mn>4</mn></msup>'
- assert mathml(SingularityFunction(x, a, n), printer='presentation') == \
- '<msup><mfenced close="⟩" open="⟨"><mrow><mrow>' \
- '<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \
- '<mi>n</mi></msup>'
- assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \
- '<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
- '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>'
- assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \
- '<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
- '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>'
- def test_mathml_matrix_functions():
- from sympy.matrices import Adjoint, Inverse, Transpose
- X = MatrixSymbol('X', 2, 2)
- Y = MatrixSymbol('Y', 2, 2)
- assert mathml(Adjoint(X), printer='presentation') == \
- '<msup><mi>X</mi><mo>†</mo></msup>'
- assert mathml(Adjoint(X + Y), printer='presentation') == \
- '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
- assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \
- '<mrow><msup><mi>X</mi><mo>†</mo></msup><mo>+</mo><msup>' \
- '<mi>Y</mi><mo>†</mo></msup></mrow>'
- assert mathml(Adjoint(X*Y), printer='presentation') == \
- '<msup><mfenced><mrow><mi>X</mi><mo>⁢</mo>' \
- '<mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
- assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \
- '<mrow><msup><mi>Y</mi><mo>†</mo></msup><mo>⁢' \
- '</mo><msup><mi>X</mi><mo>†</mo></msup></mrow>'
- assert mathml(Adjoint(X**2), printer='presentation') == \
- '<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>†</mo></msup>'
- assert mathml(Adjoint(X)**2, printer='presentation') == \
- '<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>2</mn></msup>'
- assert mathml(Adjoint(Inverse(X)), printer='presentation') == \
- '<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>†</mo></msup>'
- assert mathml(Inverse(Adjoint(X)), printer='presentation') == \
- '<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>-1</mn></msup>'
- assert mathml(Adjoint(Transpose(X)), printer='presentation') == \
- '<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>†</mo></msup>'
- assert mathml(Transpose(Adjoint(X)), printer='presentation') == \
- '<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mo>T</mo></msup>'
- assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \
- '<msup><mfenced><mrow><msup><mi>X</mi><mo>†</mo></msup>' \
- '<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
- assert mathml(Transpose(X), printer='presentation') == \
- '<msup><mi>X</mi><mo>T</mo></msup>'
- assert mathml(Transpose(X + Y), printer='presentation') == \
- '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
- def test_mathml_special_matrices():
- from sympy.matrices import Identity, ZeroMatrix, OneMatrix
- assert mathml(Identity(4), printer='presentation') == '<mi>𝕀</mi>'
- assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>𝟘</mn>'
- assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>𝟙</mn>'
- def test_mathml_piecewise():
- from sympy.functions.elementary.piecewise import Piecewise
- # Content MathML
- assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \
- '<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>'
- raises(ValueError, lambda: mathml(Piecewise((x, x <= 1))))
- def test_issue_17857():
- assert mathml(Range(-oo, oo), printer='presentation') == \
- '<mfenced close="}" open="{"><mi>…</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>…</mi></mfenced>'
- assert mathml(Range(oo, -oo, -1), printer='presentation') == \
- '<mfenced close="}" open="{"><mi>…</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>…</mi></mfenced>'
- def test_float_roundtrip():
- x = sympify(0.8975979010256552)
- y = float(mp.doprint(x).strip('</cn>'))
- assert x == y
|