test_latex.py 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123
  1. from sympy import MatAdd, MatMul, Array
  2. from sympy.algebras.quaternion import Quaternion
  3. from sympy.calculus.accumulationbounds import AccumBounds
  4. from sympy.combinatorics.permutations import Cycle, Permutation, AppliedPermutation
  5. from sympy.concrete.products import Product
  6. from sympy.concrete.summations import Sum
  7. from sympy.core.containers import Tuple, Dict
  8. from sympy.core.expr import UnevaluatedExpr
  9. from sympy.core.function import (Derivative, Function, Lambda, Subs, diff)
  10. from sympy.core.mod import Mod
  11. from sympy.core.mul import Mul
  12. from sympy.core.numbers import (AlgebraicNumber, Float, I, Integer, Rational, oo, pi)
  13. from sympy.core.parameters import evaluate
  14. from sympy.core.power import Pow
  15. from sympy.core.relational import Eq, Ne
  16. from sympy.core.singleton import S
  17. from sympy.core.symbol import (Symbol, Wild, symbols)
  18. from sympy.functions.combinatorial.factorials import (FallingFactorial, RisingFactorial, binomial, factorial, factorial2, subfactorial)
  19. from sympy.functions.combinatorial.numbers import bernoulli, bell, catalan, euler, genocchi, lucas, fibonacci, tribonacci
  20. from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, polar_lift, re)
  21. from sympy.functions.elementary.exponential import (LambertW, exp, log)
  22. from sympy.functions.elementary.hyperbolic import (asinh, coth)
  23. from sympy.functions.elementary.integers import (ceiling, floor, frac)
  24. from sympy.functions.elementary.miscellaneous import (Max, Min, root, sqrt)
  25. from sympy.functions.elementary.piecewise import Piecewise
  26. from sympy.functions.elementary.trigonometric import (acsc, asin, cos, cot, sin, tan)
  27. from sympy.functions.special.beta_functions import beta
  28. from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
  29. from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f, elliptic_k, elliptic_pi)
  30. from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint)
  31. from sympy.functions.special.gamma_functions import (gamma, uppergamma)
  32. from sympy.functions.special.hyper import (hyper, meijerg)
  33. from sympy.functions.special.mathieu_functions import (mathieuc, mathieucprime, mathieus, mathieusprime)
  34. from sympy.functions.special.polynomials import (assoc_laguerre, assoc_legendre, chebyshevt, chebyshevu, gegenbauer, hermite, jacobi, laguerre, legendre)
  35. from sympy.functions.special.singularity_functions import SingularityFunction
  36. from sympy.functions.special.spherical_harmonics import (Ynm, Znm)
  37. from sympy.functions.special.tensor_functions import (KroneckerDelta, LeviCivita)
  38. from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, stieltjes, zeta)
  39. from sympy.integrals.integrals import Integral
  40. from sympy.integrals.transforms import (CosineTransform, FourierTransform, InverseCosineTransform, InverseFourierTransform, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, LaplaceTransform, MellinTransform, SineTransform)
  41. from sympy.logic import Implies
  42. from sympy.logic.boolalg import (And, Or, Xor, Equivalent, false, Not, true)
  43. from sympy.matrices.dense import Matrix
  44. from sympy.matrices.expressions.kronecker import KroneckerProduct
  45. from sympy.matrices.expressions.matexpr import MatrixSymbol
  46. from sympy.matrices.expressions.permutation import PermutationMatrix
  47. from sympy.matrices.expressions.slice import MatrixSlice
  48. from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
  49. from sympy.ntheory.factor_ import (divisor_sigma, primenu, primeomega, reduced_totient, totient, udivisor_sigma)
  50. from sympy.physics.quantum import Commutator, Operator
  51. from sympy.physics.quantum.trace import Tr
  52. from sympy.physics.units import meter, gibibyte, gram, microgram, second, milli, micro
  53. from sympy.polys.domains.integerring import ZZ
  54. from sympy.polys.fields import field
  55. from sympy.polys.polytools import Poly
  56. from sympy.polys.rings import ring
  57. from sympy.polys.rootoftools import (RootSum, rootof)
  58. from sympy.series.formal import fps
  59. from sympy.series.fourier import fourier_series
  60. from sympy.series.limits import Limit
  61. from sympy.series.order import Order
  62. from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer)
  63. from sympy.sets.conditionset import ConditionSet
  64. from sympy.sets.contains import Contains
  65. from sympy.sets.fancysets import (ComplexRegion, ImageSet, Range)
  66. from sympy.sets.ordinals import Ordinal, OrdinalOmega, OmegaPower
  67. from sympy.sets.powerset import PowerSet
  68. from sympy.sets.sets import (FiniteSet, Interval, Union, Intersection, Complement, SymmetricDifference, ProductSet)
  69. from sympy.sets.setexpr import SetExpr
  70. from sympy.stats.crv_types import Normal
  71. from sympy.stats.symbolic_probability import (Covariance, Expectation,
  72. Probability, Variance)
  73. from sympy.tensor.array import (ImmutableDenseNDimArray,
  74. ImmutableSparseNDimArray,
  75. MutableSparseNDimArray,
  76. MutableDenseNDimArray,
  77. tensorproduct)
  78. from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
  79. from sympy.tensor.indexed import (Idx, Indexed, IndexedBase)
  80. from sympy.tensor.toperators import PartialDerivative
  81. from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
  82. from sympy.testing.pytest import (XFAIL, raises, _both_exp_pow,
  83. warns_deprecated_sympy)
  84. from sympy.printing.latex import (latex, translate, greek_letters_set,
  85. tex_greek_dictionary, multiline_latex,
  86. latex_escape, LatexPrinter)
  87. import sympy as sym
  88. from sympy.abc import mu, tau
  89. class lowergamma(sym.lowergamma):
  90. pass # testing notation inheritance by a subclass with same name
  91. x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
  92. k, m, n = symbols('k m n', integer=True)
  93. def test_printmethod():
  94. class R(Abs):
  95. def _latex(self, printer):
  96. return "foo(%s)" % printer._print(self.args[0])
  97. assert latex(R(x)) == r"foo(x)"
  98. class R(Abs):
  99. def _latex(self, printer):
  100. return "foo"
  101. assert latex(R(x)) == r"foo"
  102. def test_latex_basic():
  103. assert latex(1 + x) == r"x + 1"
  104. assert latex(x**2) == r"x^{2}"
  105. assert latex(x**(1 + x)) == r"x^{x + 1}"
  106. assert latex(x**3 + x + 1 + x**2) == r"x^{3} + x^{2} + x + 1"
  107. assert latex(2*x*y) == r"2 x y"
  108. assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
  109. assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
  110. assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
  111. assert latex(x**S.Half**5) == r"\sqrt[32]{x}"
  112. assert latex(Mul(S.Half, x**2, -5, evaluate=False)) == r"\frac{1}{2} x^{2} \left(-5\right)"
  113. assert latex(Mul(S.Half, x**2, 5, evaluate=False)) == r"\frac{1}{2} x^{2} \cdot 5"
  114. assert latex(Mul(-5, -5, evaluate=False)) == r"\left(-5\right) \left(-5\right)"
  115. assert latex(Mul(5, -5, evaluate=False)) == r"5 \left(-5\right)"
  116. assert latex(Mul(S.Half, -5, S.Half, evaluate=False)) == r"\frac{1}{2} \left(-5\right) \frac{1}{2}"
  117. assert latex(Mul(5, I, 5, evaluate=False)) == r"5 i 5"
  118. assert latex(Mul(5, I, -5, evaluate=False)) == r"5 i \left(-5\right)"
  119. assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
  120. assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
  121. assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
  122. assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
  123. assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
  124. assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
  125. assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \cdot \frac{1}{2}'
  126. assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
  127. r'1 \cdot 1 \cdot \frac{1}{2}'
  128. assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
  129. r'1 \cdot 1 \cdot 2 \cdot 3 x'
  130. assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
  131. assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
  132. r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
  133. assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
  134. r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
  135. assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
  136. r'\frac{2}{3} \cdot \frac{5}{7}'
  137. assert latex(1/x) == r"\frac{1}{x}"
  138. assert latex(1/x, fold_short_frac=True) == r"1 / x"
  139. assert latex(-S(3)/2) == r"- \frac{3}{2}"
  140. assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
  141. assert latex(1/x**2) == r"\frac{1}{x^{2}}"
  142. assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
  143. assert latex(x/2) == r"\frac{x}{2}"
  144. assert latex(x/2, fold_short_frac=True) == r"x / 2"
  145. assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
  146. assert latex((x + y)/(2*x), fold_short_frac=True) == \
  147. r"\left(x + y\right) / 2 x"
  148. assert latex((x + y)/(2*x), long_frac_ratio=0) == \
  149. r"\frac{1}{2 x} \left(x + y\right)"
  150. assert latex((x + y)/x) == r"\frac{x + y}{x}"
  151. assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
  152. assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
  153. assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
  154. r"\frac{2 x}{3} \sqrt{2}"
  155. assert latex(binomial(x, y)) == r"{\binom{x}{y}}"
  156. x_star = Symbol('x^*')
  157. f = Function('f')
  158. assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
  159. assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
  160. assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
  161. assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"
  162. assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
  163. assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
  164. r"\left(2 \int x\, dx\right) / 3"
  165. assert latex(sqrt(x)) == r"\sqrt{x}"
  166. assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
  167. assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
  168. assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
  169. assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
  170. assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
  171. assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
  172. assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
  173. assert latex(x**Rational(3, 4), fold_frac_powers=True) == r"x^{3/4}"
  174. assert latex((x + 1)**Rational(3, 4)) == \
  175. r"\left(x + 1\right)^{\frac{3}{4}}"
  176. assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
  177. r"\left(x + 1\right)^{3/4}"
  178. assert latex(AlgebraicNumber(sqrt(2))) == r"\sqrt{2}"
  179. assert latex(AlgebraicNumber(sqrt(2), [3, -7])) == r"-7 + 3 \sqrt{2}"
  180. assert latex(AlgebraicNumber(sqrt(2), alias='alpha')) == r"\alpha"
  181. assert latex(AlgebraicNumber(sqrt(2), [3, -7], alias='alpha')) == \
  182. r"3 \alpha - 7"
  183. assert latex(AlgebraicNumber(2**(S(1)/3), [1, 3, -7], alias='beta')) == \
  184. r"\beta^{2} + 3 \beta - 7"
  185. k = ZZ.cyclotomic_field(5)
  186. assert latex(k.ext.field_element([1, 2, 3, 4])) == \
  187. r"\zeta^{3} + 2 \zeta^{2} + 3 \zeta + 4"
  188. assert latex(k.ext.field_element([1, 2, 3, 4]), order='old') == \
  189. r"4 + 3 \zeta + 2 \zeta^{2} + \zeta^{3}"
  190. assert latex(k.primes_above(19)[0]) == \
  191. r"\left(19, \zeta^{2} + 5 \zeta + 1\right)"
  192. assert latex(k.primes_above(19)[0], order='old') == \
  193. r"\left(19, 1 + 5 \zeta + \zeta^{2}\right)"
  194. assert latex(k.primes_above(7)[0]) == r"\left(7\right)"
  195. assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
  196. assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
  197. assert latex(1.5e20*x, mul_symbol='times') == \
  198. r"1.5 \times 10^{20} \times x"
  199. assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
  200. assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
  201. assert latex(sin(x)**Rational(3, 2)) == \
  202. r"\sin^{\frac{3}{2}}{\left(x \right)}"
  203. assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
  204. r"\sin^{3/2}{\left(x \right)}"
  205. assert latex(~x) == r"\neg x"
  206. assert latex(x & y) == r"x \wedge y"
  207. assert latex(x & y & z) == r"x \wedge y \wedge z"
  208. assert latex(x | y) == r"x \vee y"
  209. assert latex(x | y | z) == r"x \vee y \vee z"
  210. assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
  211. assert latex(Implies(x, y)) == r"x \Rightarrow y"
  212. assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
  213. assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
  214. assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
  215. assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
  216. assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
  217. assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
  218. r"x_i \wedge y_i"
  219. assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
  220. r"x_i \wedge y_i \wedge z_i"
  221. assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
  222. assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
  223. r"x_i \vee y_i \vee z_i"
  224. assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
  225. r"z_i \vee \left(x_i \wedge y_i\right)"
  226. assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
  227. r"x_i \Rightarrow y_i"
  228. assert latex(Pow(Rational(1, 3), -1, evaluate=False)) == r"\frac{1}{\frac{1}{3}}"
  229. assert latex(Pow(Rational(1, 3), -2, evaluate=False)) == r"\frac{1}{(\frac{1}{3})^{2}}"
  230. assert latex(Pow(Integer(1)/100, -1, evaluate=False)) == r"\frac{1}{\frac{1}{100}}"
  231. p = Symbol('p', positive=True)
  232. assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
  233. def test_latex_builtins():
  234. assert latex(True) == r"\text{True}"
  235. assert latex(False) == r"\text{False}"
  236. assert latex(None) == r"\text{None}"
  237. assert latex(true) == r"\text{True}"
  238. assert latex(false) == r'\text{False}'
  239. def test_latex_SingularityFunction():
  240. assert latex(SingularityFunction(x, 4, 5)) == \
  241. r"{\left\langle x - 4 \right\rangle}^{5}"
  242. assert latex(SingularityFunction(x, -3, 4)) == \
  243. r"{\left\langle x + 3 \right\rangle}^{4}"
  244. assert latex(SingularityFunction(x, 0, 4)) == \
  245. r"{\left\langle x \right\rangle}^{4}"
  246. assert latex(SingularityFunction(x, a, n)) == \
  247. r"{\left\langle - a + x \right\rangle}^{n}"
  248. assert latex(SingularityFunction(x, 4, -2)) == \
  249. r"{\left\langle x - 4 \right\rangle}^{-2}"
  250. assert latex(SingularityFunction(x, 4, -1)) == \
  251. r"{\left\langle x - 4 \right\rangle}^{-1}"
  252. assert latex(SingularityFunction(x, 4, 5)**3) == \
  253. r"{\left({\langle x - 4 \rangle}^{5}\right)}^{3}"
  254. assert latex(SingularityFunction(x, -3, 4)**3) == \
  255. r"{\left({\langle x + 3 \rangle}^{4}\right)}^{3}"
  256. assert latex(SingularityFunction(x, 0, 4)**3) == \
  257. r"{\left({\langle x \rangle}^{4}\right)}^{3}"
  258. assert latex(SingularityFunction(x, a, n)**3) == \
  259. r"{\left({\langle - a + x \rangle}^{n}\right)}^{3}"
  260. assert latex(SingularityFunction(x, 4, -2)**3) == \
  261. r"{\left({\langle x - 4 \rangle}^{-2}\right)}^{3}"
  262. assert latex((SingularityFunction(x, 4, -1)**3)**3) == \
  263. r"{\left({\langle x - 4 \rangle}^{-1}\right)}^{9}"
  264. def test_latex_cycle():
  265. assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
  266. assert latex(Cycle(1, 2)(4, 5, 6)) == \
  267. r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
  268. assert latex(Cycle()) == r"\left( \right)"
  269. def test_latex_permutation():
  270. assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
  271. assert latex(Permutation(1, 2)(4, 5, 6)) == \
  272. r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
  273. assert latex(Permutation()) == r"\left( \right)"
  274. assert latex(Permutation(2, 4)*Permutation(5)) == \
  275. r"\left( 2\; 4\right)\left( 5\right)"
  276. assert latex(Permutation(5)) == r"\left( 5\right)"
  277. assert latex(Permutation(0, 1), perm_cyclic=False) == \
  278. r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
  279. assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
  280. r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
  281. assert latex(Permutation(), perm_cyclic=False) == \
  282. r"\left( \right)"
  283. with warns_deprecated_sympy():
  284. old_print_cyclic = Permutation.print_cyclic
  285. Permutation.print_cyclic = False
  286. assert latex(Permutation(0, 1)(2, 3)) == \
  287. r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
  288. Permutation.print_cyclic = old_print_cyclic
  289. def test_latex_Float():
  290. assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
  291. assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
  292. assert latex(Float(1.0e-100), mul_symbol="times") == \
  293. r"1.0 \times 10^{-100}"
  294. assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
  295. r"1.0 \cdot 10^{4}"
  296. assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
  297. r"1.0 \cdot 10^{4}"
  298. assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
  299. r"10000.0"
  300. assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
  301. r"9.99990000000000 \cdot 10^{-2}"
  302. def test_latex_vector_expressions():
  303. A = CoordSys3D('A')
  304. assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
  305. r"\mathbf{\hat{i}_{A}} \times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
  306. assert latex(Cross(A.i, A.j)) == \
  307. r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
  308. assert latex(x*Cross(A.i, A.j)) == \
  309. r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
  310. assert latex(Cross(x*A.i, A.j)) == \
  311. r'- \mathbf{\hat{j}_{A}} \times \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)'
  312. assert latex(Curl(3*A.x*A.j)) == \
  313. r"\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
  314. assert latex(Curl(3*A.x*A.j+A.i)) == \
  315. r"\nabla\times \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
  316. assert latex(Curl(3*x*A.x*A.j)) == \
  317. r"\nabla\times \left(\left(3 \mathbf{{x}_{A}} x\right)\mathbf{\hat{j}_{A}}\right)"
  318. assert latex(x*Curl(3*A.x*A.j)) == \
  319. r"x \left(\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)"
  320. assert latex(Divergence(3*A.x*A.j+A.i)) == \
  321. r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
  322. assert latex(Divergence(3*A.x*A.j)) == \
  323. r"\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
  324. assert latex(x*Divergence(3*A.x*A.j)) == \
  325. r"x \left(\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)"
  326. assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
  327. r"\mathbf{\hat{i}_{A}} \cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
  328. assert latex(Dot(A.i, A.j)) == \
  329. r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
  330. assert latex(Dot(x*A.i, A.j)) == \
  331. r"\mathbf{\hat{j}_{A}} \cdot \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)"
  332. assert latex(x*Dot(A.i, A.j)) == \
  333. r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
  334. assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
  335. assert latex(Gradient(A.x + 3*A.y)) == \
  336. r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
  337. assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
  338. assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
  339. assert latex(Laplacian(A.x)) == r"\Delta \mathbf{{x}_{A}}"
  340. assert latex(Laplacian(A.x + 3*A.y)) == \
  341. r"\Delta \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
  342. assert latex(x*Laplacian(A.x)) == r"x \left(\Delta \mathbf{{x}_{A}}\right)"
  343. assert latex(Laplacian(x*A.x)) == r"\Delta \left(\mathbf{{x}_{A}} x\right)"
  344. def test_latex_symbols():
  345. Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
  346. tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
  347. assert latex(tau) == r"\tau"
  348. assert latex(Tau) == r"\mathrm{T}"
  349. assert latex(TAU) == r"\tau"
  350. assert latex(taU) == r"\tau"
  351. # Check that all capitalized greek letters are handled explicitly
  352. capitalized_letters = {l.capitalize() for l in greek_letters_set}
  353. assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
  354. assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
  355. assert latex(Gamma * lmbda) == r"\Gamma \lambda"
  356. assert latex(Symbol('q1')) == r"q_{1}"
  357. assert latex(Symbol('q21')) == r"q_{21}"
  358. assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
  359. assert latex(Symbol('omega1')) == r"\omega_{1}"
  360. assert latex(Symbol('91')) == r"91"
  361. assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
  362. assert latex(Symbol('C^orig')) == r"C^{orig}"
  363. assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
  364. assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
  365. assert latex(Symbol('e^Alpha')) == r"e^{\mathrm{A}}"
  366. assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
  367. assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
  368. @XFAIL
  369. def test_latex_symbols_failing():
  370. rho, mass, volume = symbols('rho, mass, volume')
  371. assert latex(
  372. volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
  373. assert latex(volume / mass * rho == 1) == \
  374. r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
  375. assert latex(mass**3 * volume**3) == \
  376. r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
  377. @_both_exp_pow
  378. def test_latex_functions():
  379. assert latex(exp(x)) == r"e^{x}"
  380. assert latex(exp(1) + exp(2)) == r"e + e^{2}"
  381. f = Function('f')
  382. assert latex(f(x)) == r'f{\left(x \right)}'
  383. assert latex(f) == r'f'
  384. g = Function('g')
  385. assert latex(g(x, y)) == r'g{\left(x,y \right)}'
  386. assert latex(g) == r'g'
  387. h = Function('h')
  388. assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
  389. assert latex(h) == r'h'
  390. Li = Function('Li')
  391. assert latex(Li) == r'\operatorname{Li}'
  392. assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
  393. mybeta = Function('beta')
  394. # not to be confused with the beta function
  395. assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
  396. assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
  397. assert latex(beta(x, evaluate=False)) == r'\operatorname{B}\left(x, x\right)'
  398. assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
  399. assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
  400. assert latex(mybeta) == r"\beta"
  401. g = Function('gamma')
  402. # not to be confused with the gamma function
  403. assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
  404. assert latex(g(x)) == r"\gamma{\left(x \right)}"
  405. assert latex(g) == r"\gamma"
  406. a_1 = Function('a_1')
  407. assert latex(a_1) == r"a_{1}"
  408. assert latex(a_1(x)) == r"a_{1}{\left(x \right)}"
  409. assert latex(Function('a_1')) == r"a_{1}"
  410. # Issue #16925
  411. # multi letter function names
  412. # > simple
  413. assert latex(Function('ab')) == r"\operatorname{ab}"
  414. assert latex(Function('ab1')) == r"\operatorname{ab}_{1}"
  415. assert latex(Function('ab12')) == r"\operatorname{ab}_{12}"
  416. assert latex(Function('ab_1')) == r"\operatorname{ab}_{1}"
  417. assert latex(Function('ab_12')) == r"\operatorname{ab}_{12}"
  418. assert latex(Function('ab_c')) == r"\operatorname{ab}_{c}"
  419. assert latex(Function('ab_cd')) == r"\operatorname{ab}_{cd}"
  420. # > with argument
  421. assert latex(Function('ab')(Symbol('x'))) == r"\operatorname{ab}{\left(x \right)}"
  422. assert latex(Function('ab1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}"
  423. assert latex(Function('ab12')(Symbol('x'))) == r"\operatorname{ab}_{12}{\left(x \right)}"
  424. assert latex(Function('ab_1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}"
  425. assert latex(Function('ab_c')(Symbol('x'))) == r"\operatorname{ab}_{c}{\left(x \right)}"
  426. assert latex(Function('ab_cd')(Symbol('x'))) == r"\operatorname{ab}_{cd}{\left(x \right)}"
  427. # > with power
  428. # does not work on functions without brackets
  429. # > with argument and power combined
  430. assert latex(Function('ab')()**2) == r"\operatorname{ab}^{2}{\left( \right)}"
  431. assert latex(Function('ab1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}"
  432. assert latex(Function('ab12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}"
  433. assert latex(Function('ab_1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}"
  434. assert latex(Function('ab_12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}"
  435. assert latex(Function('ab')(Symbol('x'))**2) == r"\operatorname{ab}^{2}{\left(x \right)}"
  436. assert latex(Function('ab1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}"
  437. assert latex(Function('ab12')(Symbol('x'))**2) == r"\operatorname{ab}_{12}^{2}{\left(x \right)}"
  438. assert latex(Function('ab_1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}"
  439. assert latex(Function('ab_12')(Symbol('x'))**2) == \
  440. r"\operatorname{ab}_{12}^{2}{\left(x \right)}"
  441. # single letter function names
  442. # > simple
  443. assert latex(Function('a')) == r"a"
  444. assert latex(Function('a1')) == r"a_{1}"
  445. assert latex(Function('a12')) == r"a_{12}"
  446. assert latex(Function('a_1')) == r"a_{1}"
  447. assert latex(Function('a_12')) == r"a_{12}"
  448. # > with argument
  449. assert latex(Function('a')()) == r"a{\left( \right)}"
  450. assert latex(Function('a1')()) == r"a_{1}{\left( \right)}"
  451. assert latex(Function('a12')()) == r"a_{12}{\left( \right)}"
  452. assert latex(Function('a_1')()) == r"a_{1}{\left( \right)}"
  453. assert latex(Function('a_12')()) == r"a_{12}{\left( \right)}"
  454. # > with power
  455. # does not work on functions without brackets
  456. # > with argument and power combined
  457. assert latex(Function('a')()**2) == r"a^{2}{\left( \right)}"
  458. assert latex(Function('a1')()**2) == r"a_{1}^{2}{\left( \right)}"
  459. assert latex(Function('a12')()**2) == r"a_{12}^{2}{\left( \right)}"
  460. assert latex(Function('a_1')()**2) == r"a_{1}^{2}{\left( \right)}"
  461. assert latex(Function('a_12')()**2) == r"a_{12}^{2}{\left( \right)}"
  462. assert latex(Function('a')(Symbol('x'))**2) == r"a^{2}{\left(x \right)}"
  463. assert latex(Function('a1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}"
  464. assert latex(Function('a12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}"
  465. assert latex(Function('a_1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}"
  466. assert latex(Function('a_12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}"
  467. assert latex(Function('a')()**32) == r"a^{32}{\left( \right)}"
  468. assert latex(Function('a1')()**32) == r"a_{1}^{32}{\left( \right)}"
  469. assert latex(Function('a12')()**32) == r"a_{12}^{32}{\left( \right)}"
  470. assert latex(Function('a_1')()**32) == r"a_{1}^{32}{\left( \right)}"
  471. assert latex(Function('a_12')()**32) == r"a_{12}^{32}{\left( \right)}"
  472. assert latex(Function('a')(Symbol('x'))**32) == r"a^{32}{\left(x \right)}"
  473. assert latex(Function('a1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}"
  474. assert latex(Function('a12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}"
  475. assert latex(Function('a_1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}"
  476. assert latex(Function('a_12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}"
  477. assert latex(Function('a')()**a) == r"a^{a}{\left( \right)}"
  478. assert latex(Function('a1')()**a) == r"a_{1}^{a}{\left( \right)}"
  479. assert latex(Function('a12')()**a) == r"a_{12}^{a}{\left( \right)}"
  480. assert latex(Function('a_1')()**a) == r"a_{1}^{a}{\left( \right)}"
  481. assert latex(Function('a_12')()**a) == r"a_{12}^{a}{\left( \right)}"
  482. assert latex(Function('a')(Symbol('x'))**a) == r"a^{a}{\left(x \right)}"
  483. assert latex(Function('a1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}"
  484. assert latex(Function('a12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}"
  485. assert latex(Function('a_1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}"
  486. assert latex(Function('a_12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}"
  487. ab = Symbol('ab')
  488. assert latex(Function('a')()**ab) == r"a^{ab}{\left( \right)}"
  489. assert latex(Function('a1')()**ab) == r"a_{1}^{ab}{\left( \right)}"
  490. assert latex(Function('a12')()**ab) == r"a_{12}^{ab}{\left( \right)}"
  491. assert latex(Function('a_1')()**ab) == r"a_{1}^{ab}{\left( \right)}"
  492. assert latex(Function('a_12')()**ab) == r"a_{12}^{ab}{\left( \right)}"
  493. assert latex(Function('a')(Symbol('x'))**ab) == r"a^{ab}{\left(x \right)}"
  494. assert latex(Function('a1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}"
  495. assert latex(Function('a12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}"
  496. assert latex(Function('a_1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}"
  497. assert latex(Function('a_12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}"
  498. assert latex(Function('a^12')(x)) == R"a^{12}{\left(x \right)}"
  499. assert latex(Function('a^12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}"
  500. assert latex(Function('a__12')(x)) == R"a^{12}{\left(x \right)}"
  501. assert latex(Function('a__12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}"
  502. assert latex(Function('a_1__1_2')(x)) == R"a^{1}_{1 2}{\left(x \right)}"
  503. # issue 5868
  504. omega1 = Function('omega1')
  505. assert latex(omega1) == r"\omega_{1}"
  506. assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
  507. assert latex(sin(x)) == r"\sin{\left(x \right)}"
  508. assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
  509. assert latex(sin(2*x**2), fold_func_brackets=True) == \
  510. r"\sin {2 x^{2}}"
  511. assert latex(sin(x**2), fold_func_brackets=True) == \
  512. r"\sin {x^{2}}"
  513. assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
  514. assert latex(asin(x)**2, inv_trig_style="full") == \
  515. r"\arcsin^{2}{\left(x \right)}"
  516. assert latex(asin(x)**2, inv_trig_style="power") == \
  517. r"\sin^{-1}{\left(x \right)}^{2}"
  518. assert latex(asin(x**2), inv_trig_style="power",
  519. fold_func_brackets=True) == \
  520. r"\sin^{-1} {x^{2}}"
  521. assert latex(acsc(x), inv_trig_style="full") == \
  522. r"\operatorname{arccsc}{\left(x \right)}"
  523. assert latex(asinh(x), inv_trig_style="full") == \
  524. r"\operatorname{arsinh}{\left(x \right)}"
  525. assert latex(factorial(k)) == r"k!"
  526. assert latex(factorial(-k)) == r"\left(- k\right)!"
  527. assert latex(factorial(k)**2) == r"k!^{2}"
  528. assert latex(subfactorial(k)) == r"!k"
  529. assert latex(subfactorial(-k)) == r"!\left(- k\right)"
  530. assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
  531. assert latex(factorial2(k)) == r"k!!"
  532. assert latex(factorial2(-k)) == r"\left(- k\right)!!"
  533. assert latex(factorial2(k)**2) == r"k!!^{2}"
  534. assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
  535. assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
  536. assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
  537. assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
  538. assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
  539. assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
  540. assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
  541. assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
  542. assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
  543. assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
  544. assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
  545. assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
  546. assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
  547. assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
  548. assert latex(Abs(x)) == r"\left|{x}\right|"
  549. assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
  550. assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
  551. assert latex(re(x + y)) == \
  552. r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
  553. assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
  554. assert latex(conjugate(x)) == r"\overline{x}"
  555. assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
  556. assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
  557. assert latex(gamma(x)) == r"\Gamma\left(x\right)"
  558. w = Wild('w')
  559. assert latex(gamma(w)) == r"\Gamma\left(w\right)"
  560. assert latex(Order(x)) == r"O\left(x\right)"
  561. assert latex(Order(x, x)) == r"O\left(x\right)"
  562. assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
  563. assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
  564. assert latex(Order(x - y, (x, y))) == \
  565. r"O\left(x - y; x\rightarrow y\right)"
  566. assert latex(Order(x, x, y)) == \
  567. r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
  568. assert latex(Order(x, x, y)) == \
  569. r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
  570. assert latex(Order(x, (x, oo), (y, oo))) == \
  571. r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
  572. assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
  573. assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
  574. assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
  575. assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
  576. assert latex(cot(x)) == r'\cot{\left(x \right)}'
  577. assert latex(coth(x)) == r'\coth{\left(x \right)}'
  578. assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
  579. assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
  580. assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
  581. assert latex(arg(x)) == r'\arg{\left(x \right)}'
  582. assert latex(zeta(x)) == r"\zeta\left(x\right)"
  583. assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
  584. assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
  585. assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
  586. assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
  587. assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
  588. assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
  589. assert latex(
  590. polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
  591. assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
  592. assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
  593. assert latex(stieltjes(x)) == r"\gamma_{x}"
  594. assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
  595. assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
  596. assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
  597. assert latex(elliptic_k(z)) == r"K\left(z\right)"
  598. assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
  599. assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
  600. assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
  601. assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
  602. assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
  603. assert latex(elliptic_e(z)) == r"E\left(z\right)"
  604. assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
  605. assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
  606. assert latex(elliptic_pi(x, y, z)**2) == \
  607. r"\Pi^{2}\left(x; y\middle| z\right)"
  608. assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
  609. assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
  610. assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
  611. assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
  612. assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
  613. assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
  614. assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
  615. assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
  616. assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
  617. assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
  618. assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
  619. assert latex(jacobi(n, a, b, x)) == \
  620. r'P_{n}^{\left(a,b\right)}\left(x\right)'
  621. assert latex(jacobi(n, a, b, x)**2) == \
  622. r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
  623. assert latex(gegenbauer(n, a, x)) == \
  624. r'C_{n}^{\left(a\right)}\left(x\right)'
  625. assert latex(gegenbauer(n, a, x)**2) == \
  626. r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
  627. assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
  628. assert latex(chebyshevt(n, x)**2) == \
  629. r'\left(T_{n}\left(x\right)\right)^{2}'
  630. assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
  631. assert latex(chebyshevu(n, x)**2) == \
  632. r'\left(U_{n}\left(x\right)\right)^{2}'
  633. assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
  634. assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
  635. assert latex(assoc_legendre(n, a, x)) == \
  636. r'P_{n}^{\left(a\right)}\left(x\right)'
  637. assert latex(assoc_legendre(n, a, x)**2) == \
  638. r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
  639. assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
  640. assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
  641. assert latex(assoc_laguerre(n, a, x)) == \
  642. r'L_{n}^{\left(a\right)}\left(x\right)'
  643. assert latex(assoc_laguerre(n, a, x)**2) == \
  644. r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
  645. assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
  646. assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
  647. theta = Symbol("theta", real=True)
  648. phi = Symbol("phi", real=True)
  649. assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
  650. assert latex(Ynm(n, m, theta, phi)**3) == \
  651. r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
  652. assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
  653. assert latex(Znm(n, m, theta, phi)**3) == \
  654. r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
  655. # Test latex printing of function names with "_"
  656. assert latex(polar_lift(0)) == \
  657. r"\operatorname{polar\_lift}{\left(0 \right)}"
  658. assert latex(polar_lift(0)**3) == \
  659. r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
  660. assert latex(totient(n)) == r'\phi\left(n\right)'
  661. assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
  662. assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
  663. assert latex(reduced_totient(n) ** 2) == \
  664. r'\left(\lambda\left(n\right)\right)^{2}'
  665. assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
  666. assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
  667. assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
  668. assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
  669. assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
  670. assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
  671. assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
  672. assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
  673. assert latex(primenu(n)) == r'\nu\left(n\right)'
  674. assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
  675. assert latex(primeomega(n)) == r'\Omega\left(n\right)'
  676. assert latex(primeomega(n) ** 2) == \
  677. r'\left(\Omega\left(n\right)\right)^{2}'
  678. assert latex(LambertW(n)) == r'W\left(n\right)'
  679. assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
  680. assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
  681. assert latex(LambertW(n) * LambertW(n)) == r"W^{2}\left(n\right)"
  682. assert latex(Pow(LambertW(n), 2)) == r"W^{2}\left(n\right)"
  683. assert latex(LambertW(n)**k) == r"W^{k}\left(n\right)"
  684. assert latex(LambertW(n, k)**p) == r"W^{p}_{k}\left(n\right)"
  685. assert latex(Mod(x, 7)) == r'x \bmod 7'
  686. assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right) \bmod 7'
  687. assert latex(Mod(7, x + 1)) == r'7 \bmod \left(x + 1\right)'
  688. assert latex(Mod(2 * x, 7)) == r'2 x \bmod 7'
  689. assert latex(Mod(7, 2 * x)) == r'7 \bmod 2 x'
  690. assert latex(Mod(x, 7) + 1) == r'\left(x \bmod 7\right) + 1'
  691. assert latex(2 * Mod(x, 7)) == r'2 \left(x \bmod 7\right)'
  692. assert latex(Mod(7, 2 * x)**n) == r'\left(7 \bmod 2 x\right)^{n}'
  693. # some unknown function name should get rendered with \operatorname
  694. fjlkd = Function('fjlkd')
  695. assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
  696. # even when it is referred to without an argument
  697. assert latex(fjlkd) == r'\operatorname{fjlkd}'
  698. # test that notation passes to subclasses of the same name only
  699. def test_function_subclass_different_name():
  700. class mygamma(gamma):
  701. pass
  702. assert latex(mygamma) == r"\operatorname{mygamma}"
  703. assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
  704. def test_hyper_printing():
  705. from sympy.abc import x, z
  706. assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
  707. (0, 1), Tuple(1, 2, 3/pi), z)) == \
  708. r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
  709. r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
  710. assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
  711. r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
  712. assert latex(hyper((x, 2), (3,), z)) == \
  713. r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
  714. r'\\ 3 \end{matrix}\middle| {z} \right)}'
  715. assert latex(hyper(Tuple(), Tuple(1), z)) == \
  716. r'{{}_{0}F_{1}\left(\begin{matrix} ' \
  717. r'\\ 1 \end{matrix}\middle| {z} \right)}'
  718. def test_latex_bessel():
  719. from sympy.functions.special.bessel import (besselj, bessely, besseli,
  720. besselk, hankel1, hankel2,
  721. jn, yn, hn1, hn2)
  722. from sympy.abc import z
  723. assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
  724. assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
  725. assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
  726. assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
  727. assert latex(hankel1(n, z**2)**2) == \
  728. r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
  729. assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
  730. assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
  731. assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
  732. assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
  733. assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
  734. def test_latex_fresnel():
  735. from sympy.functions.special.error_functions import (fresnels, fresnelc)
  736. from sympy.abc import z
  737. assert latex(fresnels(z)) == r'S\left(z\right)'
  738. assert latex(fresnelc(z)) == r'C\left(z\right)'
  739. assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
  740. assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
  741. def test_latex_brackets():
  742. assert latex((-1)**x) == r"\left(-1\right)^{x}"
  743. def test_latex_indexed():
  744. Psi_symbol = Symbol('Psi_0', complex=True, real=False)
  745. Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
  746. symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
  747. indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
  748. # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
  749. assert symbol_latex == r'\Psi_{0} \overline{\Psi_{0}}'
  750. assert indexed_latex == r'\overline{{\Psi}_{0}} {\Psi}_{0}'
  751. # Symbol('gamma') gives r'\gamma'
  752. interval = '\\mathrel{..}\\nobreak '
  753. assert latex(Indexed('x1', Symbol('i'))) == r'{x_{1}}_{i}'
  754. assert latex(Indexed('x2', Idx('i'))) == r'{x_{2}}_{i}'
  755. assert latex(Indexed('x3', Idx('i', Symbol('N')))) == r'{x_{3}}_{{i}_{0'+interval+'N - 1}}'
  756. assert latex(Indexed('x3', Idx('i', Symbol('N')+1))) == r'{x_{3}}_{{i}_{0'+interval+'N}}'
  757. assert latex(Indexed('x4', Idx('i', (Symbol('a'),Symbol('b'))))) == r'{x_{4}}_{{i}_{a'+interval+'b}}'
  758. assert latex(IndexedBase('gamma')) == r'\gamma'
  759. assert latex(IndexedBase('a b')) == r'a b'
  760. assert latex(IndexedBase('a_b')) == r'a_{b}'
  761. def test_latex_derivatives():
  762. # regular "d" for ordinary derivatives
  763. assert latex(diff(x**3, x, evaluate=False)) == \
  764. r"\frac{d}{d x} x^{3}"
  765. assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
  766. r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
  767. assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
  768. == \
  769. r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
  770. assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
  771. r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
  772. # \partial for partial derivatives
  773. assert latex(diff(sin(x * y), x, evaluate=False)) == \
  774. r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
  775. assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
  776. r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
  777. assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
  778. r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
  779. assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
  780. r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
  781. # mixed partial derivatives
  782. f = Function("f")
  783. assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
  784. r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
  785. assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
  786. r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
  787. # for negative nested Derivative
  788. assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
  789. assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
  790. r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'
  791. # use ordinary d when one of the variables has been integrated out
  792. assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
  793. r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
  794. # Derivative wrapped in power:
  795. assert latex(diff(x, x, evaluate=False)**2) == \
  796. r"\left(\frac{d}{d x} x\right)^{2}"
  797. assert latex(diff(f(x), x)**2) == \
  798. r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
  799. assert latex(diff(f(x), (x, n))) == \
  800. r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
  801. x1 = Symbol('x1')
  802. x2 = Symbol('x2')
  803. assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
  804. n1 = Symbol('n1')
  805. assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
  806. n2 = Symbol('n2')
  807. assert latex(diff(f(x), (x, Max(n1, n2)))) == \
  808. r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
  809. # set diff operator
  810. assert latex(diff(f(x), x), diff_operator="rd") == r'\frac{\mathrm{d}}{\mathrm{d} x} f{\left(x \right)}'
  811. def test_latex_subs():
  812. assert latex(Subs(x*y, (x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
  813. def test_latex_integrals():
  814. assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
  815. assert latex(Integral(x**2, (x, 0, 1))) == \
  816. r"\int\limits_{0}^{1} x^{2}\, dx"
  817. assert latex(Integral(x**2, (x, 10, 20))) == \
  818. r"\int\limits_{10}^{20} x^{2}\, dx"
  819. assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
  820. r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
  821. assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
  822. r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
  823. assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
  824. == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
  825. assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
  826. assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
  827. assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
  828. assert latex(Integral(x*y*z*t, x, y, z, t)) == \
  829. r"\iiiint t x y z\, dx\, dy\, dz\, dt"
  830. assert latex(Integral(x, x, x, x, x, x, x)) == \
  831. r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
  832. assert latex(Integral(x, x, y, (z, 0, 1))) == \
  833. r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
  834. # for negative nested Integral
  835. assert latex(Integral(-Integral(y**2,x),x)) == \
  836. r'\int \left(- \int y^{2}\, dx\right)\, dx'
  837. assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
  838. r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'
  839. # fix issue #10806
  840. assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
  841. assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
  842. assert latex(Integral(x+z/2, z)) == \
  843. r"\int \left(x + \frac{z}{2}\right)\, dz"
  844. assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
  845. # set diff operator
  846. assert latex(Integral(x, x), diff_operator="rd") == r'\int x\, \mathrm{d}x'
  847. assert latex(Integral(x, (x, 0, 1)), diff_operator="rd") == r'\int\limits_{0}^{1} x\, \mathrm{d}x'
  848. def test_latex_sets():
  849. for s in (frozenset, set):
  850. assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
  851. assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
  852. assert latex(s(range(1, 13))) == \
  853. r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
  854. s = FiniteSet
  855. assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
  856. assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
  857. assert latex(s(*range(1, 13))) == \
  858. r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
  859. def test_latex_SetExpr():
  860. iv = Interval(1, 3)
  861. se = SetExpr(iv)
  862. assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
  863. def test_latex_Range():
  864. assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
  865. assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
  866. assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
  867. assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
  868. assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
  869. assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
  870. assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
  871. assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
  872. assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
  873. assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
  874. a, b, c = symbols('a:c')
  875. assert latex(Range(a, b, c)) == r'\text{Range}\left(a, b, c\right)'
  876. assert latex(Range(a, 10, 1)) == r'\text{Range}\left(a, 10\right)'
  877. assert latex(Range(0, b, 1)) == r'\text{Range}\left(b\right)'
  878. assert latex(Range(0, 10, c)) == r'\text{Range}\left(0, 10, c\right)'
  879. i = Symbol('i', integer=True)
  880. n = Symbol('n', negative=True, integer=True)
  881. p = Symbol('p', positive=True, integer=True)
  882. assert latex(Range(i, i + 3)) == r'\left\{i, i + 1, i + 2\right\}'
  883. assert latex(Range(-oo, n, 2)) == r'\left\{\ldots, n - 4, n - 2\right\}'
  884. assert latex(Range(p, oo)) == r'\left\{p, p + 1, \ldots\right\}'
  885. # The following will work if __iter__ is improved
  886. # assert latex(Range(-3, p + 7)) == r'\left\{-3, -2, \ldots, p + 6\right\}'
  887. # Must have integer assumptions
  888. assert latex(Range(a, a + 3)) == r'\text{Range}\left(a, a + 3\right)'
  889. def test_latex_sequences():
  890. s1 = SeqFormula(a**2, (0, oo))
  891. s2 = SeqPer((1, 2))
  892. latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
  893. assert latex(s1) == latex_str
  894. latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
  895. assert latex(s2) == latex_str
  896. s3 = SeqFormula(a**2, (0, 2))
  897. s4 = SeqPer((1, 2), (0, 2))
  898. latex_str = r'\left[0, 1, 4\right]'
  899. assert latex(s3) == latex_str
  900. latex_str = r'\left[1, 2, 1\right]'
  901. assert latex(s4) == latex_str
  902. s5 = SeqFormula(a**2, (-oo, 0))
  903. s6 = SeqPer((1, 2), (-oo, 0))
  904. latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
  905. assert latex(s5) == latex_str
  906. latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
  907. assert latex(s6) == latex_str
  908. latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
  909. assert latex(SeqAdd(s1, s2)) == latex_str
  910. latex_str = r'\left[1, 3, 5\right]'
  911. assert latex(SeqAdd(s3, s4)) == latex_str
  912. latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
  913. assert latex(SeqAdd(s5, s6)) == latex_str
  914. latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
  915. assert latex(SeqMul(s1, s2)) == latex_str
  916. latex_str = r'\left[0, 2, 4\right]'
  917. assert latex(SeqMul(s3, s4)) == latex_str
  918. latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
  919. assert latex(SeqMul(s5, s6)) == latex_str
  920. # Sequences with symbolic limits, issue 12629
  921. s7 = SeqFormula(a**2, (a, 0, x))
  922. latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
  923. assert latex(s7) == latex_str
  924. b = Symbol('b')
  925. s8 = SeqFormula(b*a**2, (a, 0, 2))
  926. latex_str = r'\left[0, b, 4 b\right]'
  927. assert latex(s8) == latex_str
  928. def test_latex_FourierSeries():
  929. latex_str = \
  930. r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
  931. assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
  932. def test_latex_FormalPowerSeries():
  933. latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
  934. assert latex(fps(log(1 + x))) == latex_str
  935. def test_latex_intervals():
  936. a = Symbol('a', real=True)
  937. assert latex(Interval(0, 0)) == r"\left\{0\right\}"
  938. assert latex(Interval(0, a)) == r"\left[0, a\right]"
  939. assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
  940. assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
  941. assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
  942. assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
  943. def test_latex_AccumuBounds():
  944. a = Symbol('a', real=True)
  945. assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
  946. assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
  947. assert latex(AccumBounds(a + 1, a + 2)) == \
  948. r"\left\langle a + 1, a + 2\right\rangle"
  949. def test_latex_emptyset():
  950. assert latex(S.EmptySet) == r"\emptyset"
  951. def test_latex_universalset():
  952. assert latex(S.UniversalSet) == r"\mathbb{U}"
  953. def test_latex_commutator():
  954. A = Operator('A')
  955. B = Operator('B')
  956. comm = Commutator(B, A)
  957. assert latex(comm.doit()) == r"- (A B - B A)"
  958. def test_latex_union():
  959. assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
  960. r"\left[0, 1\right] \cup \left[2, 3\right]"
  961. assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
  962. r"\left\{1, 2\right\} \cup \left[3, 4\right]"
  963. def test_latex_intersection():
  964. assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
  965. r"\left[0, 1\right] \cap \left[x, y\right]"
  966. def test_latex_symmetric_difference():
  967. assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
  968. evaluate=False)) == \
  969. r'\left[2, 5\right] \triangle \left[4, 7\right]'
  970. def test_latex_Complement():
  971. assert latex(Complement(S.Reals, S.Naturals)) == \
  972. r"\mathbb{R} \setminus \mathbb{N}"
  973. def test_latex_productset():
  974. line = Interval(0, 1)
  975. bigline = Interval(0, 10)
  976. fset = FiniteSet(1, 2, 3)
  977. assert latex(line**2) == r"%s^{2}" % latex(line)
  978. assert latex(line**10) == r"%s^{10}" % latex(line)
  979. assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
  980. latex(line), latex(bigline), latex(fset))
  981. def test_latex_powerset():
  982. fset = FiniteSet(1, 2, 3)
  983. assert latex(PowerSet(fset)) == r'\mathcal{P}\left(\left\{1, 2, 3\right\}\right)'
  984. def test_latex_ordinals():
  985. w = OrdinalOmega()
  986. assert latex(w) == r"\omega"
  987. wp = OmegaPower(2, 3)
  988. assert latex(wp) == r'3 \omega^{2}'
  989. assert latex(Ordinal(wp, OmegaPower(1, 1))) == r'3 \omega^{2} + \omega'
  990. assert latex(Ordinal(OmegaPower(2, 1), OmegaPower(1, 2))) == r'\omega^{2} + 2 \omega'
  991. def test_set_operators_parenthesis():
  992. a, b, c, d = symbols('a:d')
  993. A = FiniteSet(a)
  994. B = FiniteSet(b)
  995. C = FiniteSet(c)
  996. D = FiniteSet(d)
  997. U1 = Union(A, B, evaluate=False)
  998. U2 = Union(C, D, evaluate=False)
  999. I1 = Intersection(A, B, evaluate=False)
  1000. I2 = Intersection(C, D, evaluate=False)
  1001. C1 = Complement(A, B, evaluate=False)
  1002. C2 = Complement(C, D, evaluate=False)
  1003. D1 = SymmetricDifference(A, B, evaluate=False)
  1004. D2 = SymmetricDifference(C, D, evaluate=False)
  1005. # XXX ProductSet does not support evaluate keyword
  1006. P1 = ProductSet(A, B)
  1007. P2 = ProductSet(C, D)
  1008. assert latex(Intersection(A, U2, evaluate=False)) == \
  1009. r'\left\{a\right\} \cap ' \
  1010. r'\left(\left\{c\right\} \cup \left\{d\right\}\right)'
  1011. assert latex(Intersection(U1, U2, evaluate=False)) == \
  1012. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  1013. r'\cap \left(\left\{c\right\} \cup \left\{d\right\}\right)'
  1014. assert latex(Intersection(C1, C2, evaluate=False)) == \
  1015. r'\left(\left\{a\right\} \setminus ' \
  1016. r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
  1017. r'\setminus \left\{d\right\}\right)'
  1018. assert latex(Intersection(D1, D2, evaluate=False)) == \
  1019. r'\left(\left\{a\right\} \triangle ' \
  1020. r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
  1021. r'\triangle \left\{d\right\}\right)'
  1022. assert latex(Intersection(P1, P2, evaluate=False)) == \
  1023. r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
  1024. r'\cap \left(\left\{c\right\} \times ' \
  1025. r'\left\{d\right\}\right)'
  1026. assert latex(Union(A, I2, evaluate=False)) == \
  1027. r'\left\{a\right\} \cup ' \
  1028. r'\left(\left\{c\right\} \cap \left\{d\right\}\right)'
  1029. assert latex(Union(I1, I2, evaluate=False)) == \
  1030. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  1031. r'\cup \left(\left\{c\right\} \cap \left\{d\right\}\right)'
  1032. assert latex(Union(C1, C2, evaluate=False)) == \
  1033. r'\left(\left\{a\right\} \setminus ' \
  1034. r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
  1035. r'\setminus \left\{d\right\}\right)'
  1036. assert latex(Union(D1, D2, evaluate=False)) == \
  1037. r'\left(\left\{a\right\} \triangle ' \
  1038. r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
  1039. r'\triangle \left\{d\right\}\right)'
  1040. assert latex(Union(P1, P2, evaluate=False)) == \
  1041. r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
  1042. r'\cup \left(\left\{c\right\} \times ' \
  1043. r'\left\{d\right\}\right)'
  1044. assert latex(Complement(A, C2, evaluate=False)) == \
  1045. r'\left\{a\right\} \setminus \left(\left\{c\right\} ' \
  1046. r'\setminus \left\{d\right\}\right)'
  1047. assert latex(Complement(U1, U2, evaluate=False)) == \
  1048. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  1049. r'\setminus \left(\left\{c\right\} \cup ' \
  1050. r'\left\{d\right\}\right)'
  1051. assert latex(Complement(I1, I2, evaluate=False)) == \
  1052. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  1053. r'\setminus \left(\left\{c\right\} \cap ' \
  1054. r'\left\{d\right\}\right)'
  1055. assert latex(Complement(D1, D2, evaluate=False)) == \
  1056. r'\left(\left\{a\right\} \triangle ' \
  1057. r'\left\{b\right\}\right) \setminus ' \
  1058. r'\left(\left\{c\right\} \triangle \left\{d\right\}\right)'
  1059. assert latex(Complement(P1, P2, evaluate=False)) == \
  1060. r'\left(\left\{a\right\} \times \left\{b\right\}\right) '\
  1061. r'\setminus \left(\left\{c\right\} \times '\
  1062. r'\left\{d\right\}\right)'
  1063. assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
  1064. r'\left\{a\right\} \triangle \left(\left\{c\right\} ' \
  1065. r'\triangle \left\{d\right\}\right)'
  1066. assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
  1067. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  1068. r'\triangle \left(\left\{c\right\} \cup ' \
  1069. r'\left\{d\right\}\right)'
  1070. assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
  1071. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  1072. r'\triangle \left(\left\{c\right\} \cap ' \
  1073. r'\left\{d\right\}\right)'
  1074. assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
  1075. r'\left(\left\{a\right\} \setminus ' \
  1076. r'\left\{b\right\}\right) \triangle ' \
  1077. r'\left(\left\{c\right\} \setminus \left\{d\right\}\right)'
  1078. assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
  1079. r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
  1080. r'\triangle \left(\left\{c\right\} \times ' \
  1081. r'\left\{d\right\}\right)'
  1082. # XXX This can be incorrect since cartesian product is not associative
  1083. assert latex(ProductSet(A, P2).flatten()) == \
  1084. r'\left\{a\right\} \times \left\{c\right\} \times ' \
  1085. r'\left\{d\right\}'
  1086. assert latex(ProductSet(U1, U2)) == \
  1087. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  1088. r'\times \left(\left\{c\right\} \cup ' \
  1089. r'\left\{d\right\}\right)'
  1090. assert latex(ProductSet(I1, I2)) == \
  1091. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  1092. r'\times \left(\left\{c\right\} \cap ' \
  1093. r'\left\{d\right\}\right)'
  1094. assert latex(ProductSet(C1, C2)) == \
  1095. r'\left(\left\{a\right\} \setminus ' \
  1096. r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
  1097. r'\setminus \left\{d\right\}\right)'
  1098. assert latex(ProductSet(D1, D2)) == \
  1099. r'\left(\left\{a\right\} \triangle ' \
  1100. r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
  1101. r'\triangle \left\{d\right\}\right)'
  1102. def test_latex_Complexes():
  1103. assert latex(S.Complexes) == r"\mathbb{C}"
  1104. def test_latex_Naturals():
  1105. assert latex(S.Naturals) == r"\mathbb{N}"
  1106. def test_latex_Naturals0():
  1107. assert latex(S.Naturals0) == r"\mathbb{N}_0"
  1108. def test_latex_Integers():
  1109. assert latex(S.Integers) == r"\mathbb{Z}"
  1110. def test_latex_ImageSet():
  1111. x = Symbol('x')
  1112. assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
  1113. r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}"
  1114. y = Symbol('y')
  1115. imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
  1116. assert latex(imgset) == \
  1117. r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"
  1118. imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
  1119. assert latex(imgset) == \
  1120. r"\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
  1121. def test_latex_ConditionSet():
  1122. x = Symbol('x')
  1123. assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
  1124. r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
  1125. assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
  1126. r"\left\{x\; \middle|\; x^{2} = 1 \right\}"
  1127. def test_latex_ComplexRegion():
  1128. assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
  1129. r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
  1130. assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
  1131. r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
  1132. r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
  1133. def test_latex_Contains():
  1134. x = Symbol('x')
  1135. assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
  1136. def test_latex_sum():
  1137. assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
  1138. r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
  1139. assert latex(Sum(x**2, (x, -2, 2))) == \
  1140. r"\sum_{x=-2}^{2} x^{2}"
  1141. assert latex(Sum(x**2 + y, (x, -2, 2))) == \
  1142. r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
  1143. assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
  1144. r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
  1145. def test_latex_product():
  1146. assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
  1147. r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
  1148. assert latex(Product(x**2, (x, -2, 2))) == \
  1149. r"\prod_{x=-2}^{2} x^{2}"
  1150. assert latex(Product(x**2 + y, (x, -2, 2))) == \
  1151. r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
  1152. assert latex(Product(x, (x, -2, 2))**2) == \
  1153. r"\left(\prod_{x=-2}^{2} x\right)^{2}"
  1154. def test_latex_limits():
  1155. assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
  1156. # issue 8175
  1157. f = Function('f')
  1158. assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
  1159. assert latex(Limit(f(x), x, 0, "-")) == \
  1160. r"\lim_{x \to 0^-} f{\left(x \right)}"
  1161. # issue #10806
  1162. assert latex(Limit(f(x), x, 0)**2) == \
  1163. r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
  1164. # bi-directional limit
  1165. assert latex(Limit(f(x), x, 0, dir='+-')) == \
  1166. r"\lim_{x \to 0} f{\left(x \right)}"
  1167. def test_latex_log():
  1168. assert latex(log(x)) == r"\log{\left(x \right)}"
  1169. assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
  1170. assert latex(log(x) + log(y)) == \
  1171. r"\log{\left(x \right)} + \log{\left(y \right)}"
  1172. assert latex(log(x) + log(y), ln_notation=True) == \
  1173. r"\ln{\left(x \right)} + \ln{\left(y \right)}"
  1174. assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
  1175. assert latex(pow(log(x), x), ln_notation=True) == \
  1176. r"\ln{\left(x \right)}^{x}"
  1177. def test_issue_3568():
  1178. beta = Symbol(r'\beta')
  1179. y = beta + x
  1180. assert latex(y) in [r'\beta + x', r'x + \beta']
  1181. beta = Symbol(r'beta')
  1182. y = beta + x
  1183. assert latex(y) in [r'\beta + x', r'x + \beta']
  1184. def test_latex():
  1185. assert latex((2*tau)**Rational(7, 2)) == r"8 \sqrt{2} \tau^{\frac{7}{2}}"
  1186. assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
  1187. r"\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}"
  1188. assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
  1189. r"$$8 \sqrt{2} \mu^{\frac{7}{2}}$$"
  1190. assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
  1191. def test_latex_dict():
  1192. d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
  1193. assert latex(d) == \
  1194. r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
  1195. D = Dict(d)
  1196. assert latex(D) == \
  1197. r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
  1198. def test_latex_list():
  1199. ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
  1200. assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
  1201. def test_latex_NumberSymbols():
  1202. assert latex(S.Catalan) == "G"
  1203. assert latex(S.EulerGamma) == r"\gamma"
  1204. assert latex(S.Exp1) == "e"
  1205. assert latex(S.GoldenRatio) == r"\phi"
  1206. assert latex(S.Pi) == r"\pi"
  1207. assert latex(S.TribonacciConstant) == r"\text{TribonacciConstant}"
  1208. def test_latex_rational():
  1209. # tests issue 3973
  1210. assert latex(-Rational(1, 2)) == r"- \frac{1}{2}"
  1211. assert latex(Rational(-1, 2)) == r"- \frac{1}{2}"
  1212. assert latex(Rational(1, -2)) == r"- \frac{1}{2}"
  1213. assert latex(-Rational(-1, 2)) == r"\frac{1}{2}"
  1214. assert latex(-Rational(1, 2)*x) == r"- \frac{x}{2}"
  1215. assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
  1216. r"- \frac{x}{2} - \frac{2 y}{3}"
  1217. def test_latex_inverse():
  1218. # tests issue 4129
  1219. assert latex(1/x) == r"\frac{1}{x}"
  1220. assert latex(1/(x + y)) == r"\frac{1}{x + y}"
  1221. def test_latex_DiracDelta():
  1222. assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
  1223. assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
  1224. assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
  1225. assert latex(DiracDelta(x, 5)) == \
  1226. r"\delta^{\left( 5 \right)}\left( x \right)"
  1227. assert latex(DiracDelta(x, 5)**2) == \
  1228. r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
  1229. def test_latex_Heaviside():
  1230. assert latex(Heaviside(x)) == r"\theta\left(x\right)"
  1231. assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
  1232. def test_latex_KroneckerDelta():
  1233. assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
  1234. assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
  1235. # issue 6578
  1236. assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
  1237. assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
  1238. r"\left(\delta_{x y}\right)^{2}"
  1239. def test_latex_LeviCivita():
  1240. assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
  1241. assert latex(LeviCivita(x, y, z)**2) == \
  1242. r"\left(\varepsilon_{x y z}\right)^{2}"
  1243. assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
  1244. assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
  1245. assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
  1246. def test_mode():
  1247. expr = x + y
  1248. assert latex(expr) == r'x + y'
  1249. assert latex(expr, mode='plain') == r'x + y'
  1250. assert latex(expr, mode='inline') == r'$x + y$'
  1251. assert latex(
  1252. expr, mode='equation*') == r'\begin{equation*}x + y\end{equation*}'
  1253. assert latex(
  1254. expr, mode='equation') == r'\begin{equation}x + y\end{equation}'
  1255. raises(ValueError, lambda: latex(expr, mode='foo'))
  1256. def test_latex_mathieu():
  1257. assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
  1258. assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
  1259. assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
  1260. assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
  1261. assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
  1262. assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
  1263. assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
  1264. assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
  1265. def test_latex_Piecewise():
  1266. p = Piecewise((x, x < 1), (x**2, True))
  1267. assert latex(p) == r"\begin{cases} x & \text{for}\: x < 1 \\x^{2} &" \
  1268. r" \text{otherwise} \end{cases}"
  1269. assert latex(p, itex=True) == \
  1270. r"\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} &" \
  1271. r" \text{otherwise} \end{cases}"
  1272. p = Piecewise((x, x < 0), (0, x >= 0))
  1273. assert latex(p) == r'\begin{cases} x & \text{for}\: x < 0 \\0 &' \
  1274. r' \text{otherwise} \end{cases}'
  1275. A, B = symbols("A B", commutative=False)
  1276. p = Piecewise((A**2, Eq(A, B)), (A*B, True))
  1277. s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
  1278. assert latex(p) == s
  1279. assert latex(A*p) == r"A \left(%s\right)" % s
  1280. assert latex(p*A) == r"\left(%s\right) A" % s
  1281. assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
  1282. r'\begin{cases} x & ' \
  1283. r'\text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases}'
  1284. def test_latex_Matrix():
  1285. M = Matrix([[1 + x, y], [y, x - 1]])
  1286. assert latex(M) == \
  1287. r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
  1288. assert latex(M, mode='inline') == \
  1289. r'$\left[\begin{smallmatrix}x + 1 & y\\' \
  1290. r'y & x - 1\end{smallmatrix}\right]$'
  1291. assert latex(M, mat_str='array') == \
  1292. r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
  1293. assert latex(M, mat_str='bmatrix') == \
  1294. r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
  1295. assert latex(M, mat_delim=None, mat_str='bmatrix') == \
  1296. r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
  1297. M2 = Matrix(1, 11, range(11))
  1298. assert latex(M2) == \
  1299. r'\left[\begin{array}{ccccccccccc}' \
  1300. r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
  1301. def test_latex_matrix_with_functions():
  1302. t = symbols('t')
  1303. theta1 = symbols('theta1', cls=Function)
  1304. M = Matrix([[sin(theta1(t)), cos(theta1(t))],
  1305. [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
  1306. expected = (r'\left[\begin{matrix}\sin{\left('
  1307. r'\theta_{1}{\left(t \right)} \right)} & '
  1308. r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
  1309. r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
  1310. r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
  1311. r'\theta_{1}{\left(t \right)} \right'
  1312. r')}\end{matrix}\right]')
  1313. assert latex(M) == expected
  1314. def test_latex_NDimArray():
  1315. x, y, z, w = symbols("x y z w")
  1316. for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
  1317. MutableDenseNDimArray, MutableSparseNDimArray):
  1318. # Basic: scalar array
  1319. M = ArrayType(x)
  1320. assert latex(M) == r"x"
  1321. M = ArrayType([[1 / x, y], [z, w]])
  1322. M1 = ArrayType([1 / x, y, z])
  1323. M2 = tensorproduct(M1, M)
  1324. M3 = tensorproduct(M, M)
  1325. assert latex(M) == \
  1326. r'\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]'
  1327. assert latex(M1) == \
  1328. r"\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]"
  1329. assert latex(M2) == \
  1330. r"\left[\begin{matrix}" \
  1331. r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
  1332. r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
  1333. r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
  1334. r"\end{matrix}\right]"
  1335. assert latex(M3) == \
  1336. r"""\left[\begin{matrix}"""\
  1337. r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
  1338. r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
  1339. r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
  1340. r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
  1341. r"""\end{matrix}\right]"""
  1342. Mrow = ArrayType([[x, y, 1/z]])
  1343. Mcolumn = ArrayType([[x], [y], [1/z]])
  1344. Mcol2 = ArrayType([Mcolumn.tolist()])
  1345. assert latex(Mrow) == \
  1346. r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
  1347. assert latex(Mcolumn) == \
  1348. r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
  1349. assert latex(Mcol2) == \
  1350. r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
  1351. def test_latex_mul_symbol():
  1352. assert latex(4*4**x, mul_symbol='times') == r"4 \times 4^{x}"
  1353. assert latex(4*4**x, mul_symbol='dot') == r"4 \cdot 4^{x}"
  1354. assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
  1355. assert latex(4*x, mul_symbol='times') == r"4 \times x"
  1356. assert latex(4*x, mul_symbol='dot') == r"4 \cdot x"
  1357. assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
  1358. def test_latex_issue_4381():
  1359. y = 4*4**log(2)
  1360. assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
  1361. assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
  1362. def test_latex_issue_4576():
  1363. assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
  1364. assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
  1365. assert latex(Symbol("beta_13")) == r"\beta_{13}"
  1366. assert latex(Symbol("x_a_b")) == r"x_{a b}"
  1367. assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
  1368. assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
  1369. assert latex(Symbol("x_a_1")) == r"x_{a 1}"
  1370. assert latex(Symbol("x_1_a")) == r"x_{1 a}"
  1371. assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
  1372. assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
  1373. assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
  1374. assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
  1375. assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
  1376. assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
  1377. assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
  1378. assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
  1379. assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
  1380. assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
  1381. assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
  1382. assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
  1383. def test_latex_pow_fraction():
  1384. x = Symbol('x')
  1385. # Testing exp
  1386. assert r'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
  1387. # Testing e^{-x} in case future changes alter behavior of muls or fracs
  1388. # In particular current output is \frac{1}{2}e^{- x} but perhaps this will
  1389. # change to \frac{e^{-x}}{2}
  1390. # Testing general, non-exp, power
  1391. assert r'3^{-x}' in latex(3**-x/2).replace(' ', '')
  1392. def test_noncommutative():
  1393. A, B, C = symbols('A,B,C', commutative=False)
  1394. assert latex(A*B*C**-1) == r"A B C^{-1}"
  1395. assert latex(C**-1*A*B) == r"C^{-1} A B"
  1396. assert latex(A*C**-1*B) == r"A C^{-1} B"
  1397. def test_latex_order():
  1398. expr = x**3 + x**2*y + y**4 + 3*x*y**3
  1399. assert latex(expr, order='lex') == r"x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
  1400. assert latex(
  1401. expr, order='rev-lex') == r"y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
  1402. assert latex(expr, order='none') == r"x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
  1403. def test_latex_Lambda():
  1404. assert latex(Lambda(x, x + 1)) == r"\left( x \mapsto x + 1 \right)"
  1405. assert latex(Lambda((x, y), x + 1)) == r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
  1406. assert latex(Lambda(x, x)) == r"\left( x \mapsto x \right)"
  1407. def test_latex_PolyElement():
  1408. Ruv, u, v = ring("u,v", ZZ)
  1409. Rxyz, x, y, z = ring("x,y,z", Ruv)
  1410. assert latex(x - x) == r"0"
  1411. assert latex(x - 1) == r"x - 1"
  1412. assert latex(x + 1) == r"x + 1"
  1413. assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
  1414. r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
  1415. assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
  1416. r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
  1417. assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
  1418. r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
  1419. assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
  1420. r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
  1421. assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
  1422. r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
  1423. assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
  1424. r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
  1425. def test_latex_FracElement():
  1426. Fuv, u, v = field("u,v", ZZ)
  1427. Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
  1428. assert latex(x - x) == r"0"
  1429. assert latex(x - 1) == r"x - 1"
  1430. assert latex(x + 1) == r"x + 1"
  1431. assert latex(x/3) == r"\frac{x}{3}"
  1432. assert latex(x/z) == r"\frac{x}{z}"
  1433. assert latex(x*y/z) == r"\frac{x y}{z}"
  1434. assert latex(x/(z*t)) == r"\frac{x}{z t}"
  1435. assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
  1436. assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
  1437. assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
  1438. assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
  1439. assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
  1440. assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
  1441. assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
  1442. assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
  1443. r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
  1444. assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
  1445. r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
  1446. def test_latex_Poly():
  1447. assert latex(Poly(x**2 + 2 * x, x)) == \
  1448. r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
  1449. assert latex(Poly(x/y, x)) == \
  1450. r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
  1451. assert latex(Poly(2.0*x + y)) == \
  1452. r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
  1453. def test_latex_Poly_order():
  1454. assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
  1455. r'\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
  1456. r' x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
  1457. assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
  1458. r'\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) '\
  1459. r'x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
  1460. assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
  1461. (x, y))) == \
  1462. r'\operatorname{Poly}{\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
  1463. r'a x - c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
  1464. def test_latex_ComplexRootOf():
  1465. assert latex(rootof(x**5 + x + 3, 0)) == \
  1466. r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
  1467. def test_latex_RootSum():
  1468. assert latex(RootSum(x**5 + x + 3, sin)) == \
  1469. r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
  1470. def test_settings():
  1471. raises(TypeError, lambda: latex(x*y, method="garbage"))
  1472. def test_latex_numbers():
  1473. assert latex(catalan(n)) == r"C_{n}"
  1474. assert latex(catalan(n)**2) == r"C_{n}^{2}"
  1475. assert latex(bernoulli(n)) == r"B_{n}"
  1476. assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
  1477. assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
  1478. assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
  1479. assert latex(genocchi(n)) == r"G_{n}"
  1480. assert latex(genocchi(n, x)) == r"G_{n}\left(x\right)"
  1481. assert latex(genocchi(n)**2) == r"G_{n}^{2}"
  1482. assert latex(genocchi(n, x)**2) == r"G_{n}^{2}\left(x\right)"
  1483. assert latex(bell(n)) == r"B_{n}"
  1484. assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
  1485. assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
  1486. assert latex(bell(n)**2) == r"B_{n}^{2}"
  1487. assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
  1488. assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
  1489. assert latex(fibonacci(n)) == r"F_{n}"
  1490. assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
  1491. assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
  1492. assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
  1493. assert latex(lucas(n)) == r"L_{n}"
  1494. assert latex(lucas(n)**2) == r"L_{n}^{2}"
  1495. assert latex(tribonacci(n)) == r"T_{n}"
  1496. assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
  1497. assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
  1498. assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
  1499. def test_latex_euler():
  1500. assert latex(euler(n)) == r"E_{n}"
  1501. assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
  1502. assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
  1503. def test_lamda():
  1504. assert latex(Symbol('lamda')) == r"\lambda"
  1505. assert latex(Symbol('Lamda')) == r"\Lambda"
  1506. def test_custom_symbol_names():
  1507. x = Symbol('x')
  1508. y = Symbol('y')
  1509. assert latex(x) == r"x"
  1510. assert latex(x, symbol_names={x: "x_i"}) == r"x_i"
  1511. assert latex(x + y, symbol_names={x: "x_i"}) == r"x_i + y"
  1512. assert latex(x**2, symbol_names={x: "x_i"}) == r"x_i^{2}"
  1513. assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == r"x_i + y_j"
  1514. def test_matAdd():
  1515. C = MatrixSymbol('C', 5, 5)
  1516. B = MatrixSymbol('B', 5, 5)
  1517. n = symbols("n")
  1518. h = MatrixSymbol("h", 1, 1)
  1519. assert latex(C - 2*B) in [r'- 2 B + C', r'C -2 B']
  1520. assert latex(C + 2*B) in [r'2 B + C', r'C + 2 B']
  1521. assert latex(B - 2*C) in [r'B - 2 C', r'- 2 C + B']
  1522. assert latex(B + 2*C) in [r'B + 2 C', r'2 C + B']
  1523. assert latex(n * h - (-h + h.T) * (h + h.T)) == 'n h - \\left(- h + h^{T}\\right) \\left(h + h^{T}\\right)'
  1524. assert latex(MatAdd(MatAdd(h, h), MatAdd(h, h))) == '\\left(h + h\\right) + \\left(h + h\\right)'
  1525. assert latex(MatMul(MatMul(h, h), MatMul(h, h))) == '\\left(h h\\right) \\left(h h\\right)'
  1526. def test_matMul():
  1527. A = MatrixSymbol('A', 5, 5)
  1528. B = MatrixSymbol('B', 5, 5)
  1529. x = Symbol('x')
  1530. assert latex(2*A) == r'2 A'
  1531. assert latex(2*x*A) == r'2 x A'
  1532. assert latex(-2*A) == r'- 2 A'
  1533. assert latex(1.5*A) == r'1.5 A'
  1534. assert latex(sqrt(2)*A) == r'\sqrt{2} A'
  1535. assert latex(-sqrt(2)*A) == r'- \sqrt{2} A'
  1536. assert latex(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
  1537. assert latex(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
  1538. r'- 2 A \left(2 B + A\right)']
  1539. def test_latex_MatrixSlice():
  1540. n = Symbol('n', integer=True)
  1541. x, y, z, w, t, = symbols('x y z w t')
  1542. X = MatrixSymbol('X', n, n)
  1543. Y = MatrixSymbol('Y', 10, 10)
  1544. Z = MatrixSymbol('Z', 10, 10)
  1545. assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
  1546. assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
  1547. assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
  1548. assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
  1549. assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
  1550. assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
  1551. assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
  1552. assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
  1553. assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
  1554. assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
  1555. assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
  1556. assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
  1557. assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
  1558. assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
  1559. assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
  1560. assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
  1561. assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
  1562. assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
  1563. assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
  1564. assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
  1565. assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
  1566. assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
  1567. assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
  1568. assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'
  1569. def test_latex_RandomDomain():
  1570. from sympy.stats import Normal, Die, Exponential, pspace, where
  1571. from sympy.stats.rv import RandomDomain
  1572. X = Normal('x1', 0, 1)
  1573. assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
  1574. D = Die('d1', 6)
  1575. assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
  1576. A = Exponential('a', 1)
  1577. B = Exponential('b', 1)
  1578. assert latex(
  1579. pspace(Tuple(A, B)).domain) == \
  1580. r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
  1581. assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
  1582. r'\text{Domain: }\left\{x\right\} \in \left\{1, 2\right\}'
  1583. def test_PrettyPoly():
  1584. from sympy.polys.domains import QQ
  1585. F = QQ.frac_field(x, y)
  1586. R = QQ[x, y]
  1587. assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
  1588. assert latex(R.convert(x + y)) == latex(x + y)
  1589. def test_integral_transforms():
  1590. x = Symbol("x")
  1591. k = Symbol("k")
  1592. f = Function("f")
  1593. a = Symbol("a")
  1594. b = Symbol("b")
  1595. assert latex(MellinTransform(f(x), x, k)) == \
  1596. r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1597. assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
  1598. r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1599. assert latex(LaplaceTransform(f(x), x, k)) == \
  1600. r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1601. assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
  1602. r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1603. assert latex(FourierTransform(f(x), x, k)) == \
  1604. r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1605. assert latex(InverseFourierTransform(f(k), k, x)) == \
  1606. r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1607. assert latex(CosineTransform(f(x), x, k)) == \
  1608. r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1609. assert latex(InverseCosineTransform(f(k), k, x)) == \
  1610. r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1611. assert latex(SineTransform(f(x), x, k)) == \
  1612. r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1613. assert latex(InverseSineTransform(f(k), k, x)) == \
  1614. r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1615. def test_PolynomialRingBase():
  1616. from sympy.polys.domains import QQ
  1617. assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
  1618. assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
  1619. r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
  1620. def test_categories():
  1621. from sympy.categories import (Object, IdentityMorphism,
  1622. NamedMorphism, Category, Diagram,
  1623. DiagramGrid)
  1624. A1 = Object("A1")
  1625. A2 = Object("A2")
  1626. A3 = Object("A3")
  1627. f1 = NamedMorphism(A1, A2, "f1")
  1628. f2 = NamedMorphism(A2, A3, "f2")
  1629. id_A1 = IdentityMorphism(A1)
  1630. K1 = Category("K1")
  1631. assert latex(A1) == r"A_{1}"
  1632. assert latex(f1) == r"f_{1}:A_{1}\rightarrow A_{2}"
  1633. assert latex(id_A1) == r"id:A_{1}\rightarrow A_{1}"
  1634. assert latex(f2*f1) == r"f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}"
  1635. assert latex(K1) == r"\mathbf{K_{1}}"
  1636. d = Diagram()
  1637. assert latex(d) == r"\emptyset"
  1638. d = Diagram({f1: "unique", f2: S.EmptySet})
  1639. assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
  1640. r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
  1641. r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
  1642. r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
  1643. r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
  1644. r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
  1645. d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
  1646. assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
  1647. r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
  1648. r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
  1649. r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
  1650. r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
  1651. r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
  1652. r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
  1653. r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
  1654. # A linear diagram.
  1655. A = Object("A")
  1656. B = Object("B")
  1657. C = Object("C")
  1658. f = NamedMorphism(A, B, "f")
  1659. g = NamedMorphism(B, C, "g")
  1660. d = Diagram([f, g])
  1661. grid = DiagramGrid(d)
  1662. assert latex(grid) == r"\begin{array}{cc}" + "\n" \
  1663. r"A & B \\" + "\n" \
  1664. r" & C " + "\n" \
  1665. r"\end{array}" + "\n"
  1666. def test_Modules():
  1667. from sympy.polys.domains import QQ
  1668. from sympy.polys.agca import homomorphism
  1669. R = QQ.old_poly_ring(x, y)
  1670. F = R.free_module(2)
  1671. M = F.submodule([x, y], [1, x**2])
  1672. assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
  1673. assert latex(M) == \
  1674. r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
  1675. I = R.ideal(x**2, y)
  1676. assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
  1677. Q = F / M
  1678. assert latex(Q) == \
  1679. r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
  1680. r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
  1681. assert latex(Q.submodule([1, x**3/2], [2, y])) == \
  1682. r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
  1683. r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
  1684. r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
  1685. r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
  1686. h = homomorphism(QQ.old_poly_ring(x).free_module(2),
  1687. QQ.old_poly_ring(x).free_module(2), [0, 0])
  1688. assert latex(h) == \
  1689. r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
  1690. r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
  1691. def test_QuotientRing():
  1692. from sympy.polys.domains import QQ
  1693. R = QQ.old_poly_ring(x)/[x**2 + 1]
  1694. assert latex(R) == \
  1695. r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
  1696. assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
  1697. def test_Tr():
  1698. #TODO: Handle indices
  1699. A, B = symbols('A B', commutative=False)
  1700. t = Tr(A*B)
  1701. assert latex(t) == r'\operatorname{tr}\left(A B\right)'
  1702. def test_Determinant():
  1703. from sympy.matrices import Determinant, Inverse, BlockMatrix, OneMatrix, ZeroMatrix
  1704. m = Matrix(((1, 2), (3, 4)))
  1705. assert latex(Determinant(m)) == '\\left|{\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}}\\right|'
  1706. assert latex(Determinant(Inverse(m))) == \
  1707. '\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{-1}}\\right|'
  1708. X = MatrixSymbol('X', 2, 2)
  1709. assert latex(Determinant(X)) == '\\left|{X}\\right|'
  1710. assert latex(Determinant(X + m)) == \
  1711. '\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X}\\right|'
  1712. assert latex(Determinant(BlockMatrix(((OneMatrix(2, 2), X),
  1713. (m, ZeroMatrix(2, 2)))))) == \
  1714. '\\left|{\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}}\\right|'
  1715. def test_Adjoint():
  1716. from sympy.matrices import Adjoint, Inverse, Transpose
  1717. X = MatrixSymbol('X', 2, 2)
  1718. Y = MatrixSymbol('Y', 2, 2)
  1719. assert latex(Adjoint(X)) == r'X^{\dagger}'
  1720. assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
  1721. assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
  1722. assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
  1723. assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
  1724. assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
  1725. assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
  1726. assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
  1727. assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
  1728. assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
  1729. assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
  1730. assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
  1731. m = Matrix(((1, 2), (3, 4)))
  1732. assert latex(Adjoint(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{\\dagger}'
  1733. assert latex(Adjoint(m+X)) == \
  1734. '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{\\dagger}'
  1735. from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix
  1736. assert latex(Adjoint(BlockMatrix(((OneMatrix(2, 2), X),
  1737. (m, ZeroMatrix(2, 2)))))) == \
  1738. '\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{\\dagger}'
  1739. # Issue 20959
  1740. Mx = MatrixSymbol('M^x', 2, 2)
  1741. assert latex(Adjoint(Mx)) == r'\left(M^{x}\right)^{\dagger}'
  1742. def test_Transpose():
  1743. from sympy.matrices import Transpose, MatPow, HadamardPower
  1744. X = MatrixSymbol('X', 2, 2)
  1745. Y = MatrixSymbol('Y', 2, 2)
  1746. assert latex(Transpose(X)) == r'X^{T}'
  1747. assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
  1748. assert latex(Transpose(HadamardPower(X, 2))) == r'\left(X^{\circ {2}}\right)^{T}'
  1749. assert latex(HadamardPower(Transpose(X), 2)) == r'\left(X^{T}\right)^{\circ {2}}'
  1750. assert latex(Transpose(MatPow(X, 2))) == r'\left(X^{2}\right)^{T}'
  1751. assert latex(MatPow(Transpose(X), 2)) == r'\left(X^{T}\right)^{2}'
  1752. m = Matrix(((1, 2), (3, 4)))
  1753. assert latex(Transpose(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{T}'
  1754. assert latex(Transpose(m+X)) == \
  1755. '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{T}'
  1756. from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix
  1757. assert latex(Transpose(BlockMatrix(((OneMatrix(2, 2), X),
  1758. (m, ZeroMatrix(2, 2)))))) == \
  1759. '\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{T}'
  1760. # Issue 20959
  1761. Mx = MatrixSymbol('M^x', 2, 2)
  1762. assert latex(Transpose(Mx)) == r'\left(M^{x}\right)^{T}'
  1763. def test_Hadamard():
  1764. from sympy.matrices import HadamardProduct, HadamardPower
  1765. from sympy.matrices.expressions import MatAdd, MatMul, MatPow
  1766. X = MatrixSymbol('X', 2, 2)
  1767. Y = MatrixSymbol('Y', 2, 2)
  1768. assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
  1769. assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
  1770. assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
  1771. assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
  1772. assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
  1773. r'\left(X + Y\right)^{\circ {2}}'
  1774. assert latex(HadamardPower(MatMul(X, Y), 2)) == \
  1775. r'\left(X Y\right)^{\circ {2}}'
  1776. assert latex(HadamardPower(MatPow(X, -1), -1)) == \
  1777. r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
  1778. assert latex(MatPow(HadamardPower(X, -1), -1)) == \
  1779. r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
  1780. assert latex(HadamardPower(X, n+1)) == \
  1781. r'X^{\circ \left({n + 1}\right)}'
  1782. def test_MatPow():
  1783. from sympy.matrices.expressions import MatPow
  1784. X = MatrixSymbol('X', 2, 2)
  1785. Y = MatrixSymbol('Y', 2, 2)
  1786. assert latex(MatPow(X, 2)) == 'X^{2}'
  1787. assert latex(MatPow(X*X, 2)) == '\\left(X^{2}\\right)^{2}'
  1788. assert latex(MatPow(X*Y, 2)) == '\\left(X Y\\right)^{2}'
  1789. assert latex(MatPow(X + Y, 2)) == '\\left(X + Y\\right)^{2}'
  1790. assert latex(MatPow(X + X, 2)) == '\\left(2 X\\right)^{2}'
  1791. # Issue 20959
  1792. Mx = MatrixSymbol('M^x', 2, 2)
  1793. assert latex(MatPow(Mx, 2)) == r'\left(M^{x}\right)^{2}'
  1794. def test_ElementwiseApplyFunction():
  1795. X = MatrixSymbol('X', 2, 2)
  1796. expr = (X.T*X).applyfunc(sin)
  1797. assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
  1798. expr = X.applyfunc(Lambda(x, 1/x))
  1799. assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'
  1800. def test_ZeroMatrix():
  1801. from sympy.matrices.expressions.special import ZeroMatrix
  1802. assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"0"
  1803. assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
  1804. def test_OneMatrix():
  1805. from sympy.matrices.expressions.special import OneMatrix
  1806. assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"1"
  1807. assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
  1808. def test_Identity():
  1809. from sympy.matrices.expressions.special import Identity
  1810. assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
  1811. assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
  1812. def test_latex_DFT_IDFT():
  1813. from sympy.matrices.expressions.fourier import DFT, IDFT
  1814. assert latex(DFT(13)) == r"\text{DFT}_{13}"
  1815. assert latex(IDFT(x)) == r"\text{IDFT}_{x}"
  1816. def test_boolean_args_order():
  1817. syms = symbols('a:f')
  1818. expr = And(*syms)
  1819. assert latex(expr) == r'a \wedge b \wedge c \wedge d \wedge e \wedge f'
  1820. expr = Or(*syms)
  1821. assert latex(expr) == r'a \vee b \vee c \vee d \vee e \vee f'
  1822. expr = Equivalent(*syms)
  1823. assert latex(expr) == \
  1824. r'a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow f'
  1825. expr = Xor(*syms)
  1826. assert latex(expr) == \
  1827. r'a \veebar b \veebar c \veebar d \veebar e \veebar f'
  1828. def test_imaginary():
  1829. i = sqrt(-1)
  1830. assert latex(i) == r'i'
  1831. def test_builtins_without_args():
  1832. assert latex(sin) == r'\sin'
  1833. assert latex(cos) == r'\cos'
  1834. assert latex(tan) == r'\tan'
  1835. assert latex(log) == r'\log'
  1836. assert latex(Ei) == r'\operatorname{Ei}'
  1837. assert latex(zeta) == r'\zeta'
  1838. def test_latex_greek_functions():
  1839. # bug because capital greeks that have roman equivalents should not use
  1840. # \Alpha, \Beta, \Eta, etc.
  1841. s = Function('Alpha')
  1842. assert latex(s) == r'\mathrm{A}'
  1843. assert latex(s(x)) == r'\mathrm{A}{\left(x \right)}'
  1844. s = Function('Beta')
  1845. assert latex(s) == r'\mathrm{B}'
  1846. s = Function('Eta')
  1847. assert latex(s) == r'\mathrm{H}'
  1848. assert latex(s(x)) == r'\mathrm{H}{\left(x \right)}'
  1849. # bug because sympy.core.numbers.Pi is special
  1850. p = Function('Pi')
  1851. # assert latex(p(x)) == r'\Pi{\left(x \right)}'
  1852. assert latex(p) == r'\Pi'
  1853. # bug because not all greeks are included
  1854. c = Function('chi')
  1855. assert latex(c(x)) == r'\chi{\left(x \right)}'
  1856. assert latex(c) == r'\chi'
  1857. def test_translate():
  1858. s = 'Alpha'
  1859. assert translate(s) == r'\mathrm{A}'
  1860. s = 'Beta'
  1861. assert translate(s) == r'\mathrm{B}'
  1862. s = 'Eta'
  1863. assert translate(s) == r'\mathrm{H}'
  1864. s = 'omicron'
  1865. assert translate(s) == r'o'
  1866. s = 'Pi'
  1867. assert translate(s) == r'\Pi'
  1868. s = 'pi'
  1869. assert translate(s) == r'\pi'
  1870. s = 'LamdaHatDOT'
  1871. assert translate(s) == r'\dot{\hat{\Lambda}}'
  1872. def test_other_symbols():
  1873. from sympy.printing.latex import other_symbols
  1874. for s in other_symbols:
  1875. assert latex(symbols(s)) == r"" "\\" + s
  1876. def test_modifiers():
  1877. # Test each modifier individually in the simplest case
  1878. # (with funny capitalizations)
  1879. assert latex(symbols("xMathring")) == r"\mathring{x}"
  1880. assert latex(symbols("xCheck")) == r"\check{x}"
  1881. assert latex(symbols("xBreve")) == r"\breve{x}"
  1882. assert latex(symbols("xAcute")) == r"\acute{x}"
  1883. assert latex(symbols("xGrave")) == r"\grave{x}"
  1884. assert latex(symbols("xTilde")) == r"\tilde{x}"
  1885. assert latex(symbols("xPrime")) == r"{x}'"
  1886. assert latex(symbols("xddDDot")) == r"\ddddot{x}"
  1887. assert latex(symbols("xDdDot")) == r"\dddot{x}"
  1888. assert latex(symbols("xDDot")) == r"\ddot{x}"
  1889. assert latex(symbols("xBold")) == r"\boldsymbol{x}"
  1890. assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
  1891. assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
  1892. assert latex(symbols("xHat")) == r"\hat{x}"
  1893. assert latex(symbols("xDot")) == r"\dot{x}"
  1894. assert latex(symbols("xBar")) == r"\bar{x}"
  1895. assert latex(symbols("xVec")) == r"\vec{x}"
  1896. assert latex(symbols("xAbs")) == r"\left|{x}\right|"
  1897. assert latex(symbols("xMag")) == r"\left|{x}\right|"
  1898. assert latex(symbols("xPrM")) == r"{x}'"
  1899. assert latex(symbols("xBM")) == r"\boldsymbol{x}"
  1900. # Test strings that are *only* the names of modifiers
  1901. assert latex(symbols("Mathring")) == r"Mathring"
  1902. assert latex(symbols("Check")) == r"Check"
  1903. assert latex(symbols("Breve")) == r"Breve"
  1904. assert latex(symbols("Acute")) == r"Acute"
  1905. assert latex(symbols("Grave")) == r"Grave"
  1906. assert latex(symbols("Tilde")) == r"Tilde"
  1907. assert latex(symbols("Prime")) == r"Prime"
  1908. assert latex(symbols("DDot")) == r"\dot{D}"
  1909. assert latex(symbols("Bold")) == r"Bold"
  1910. assert latex(symbols("NORm")) == r"NORm"
  1911. assert latex(symbols("AVG")) == r"AVG"
  1912. assert latex(symbols("Hat")) == r"Hat"
  1913. assert latex(symbols("Dot")) == r"Dot"
  1914. assert latex(symbols("Bar")) == r"Bar"
  1915. assert latex(symbols("Vec")) == r"Vec"
  1916. assert latex(symbols("Abs")) == r"Abs"
  1917. assert latex(symbols("Mag")) == r"Mag"
  1918. assert latex(symbols("PrM")) == r"PrM"
  1919. assert latex(symbols("BM")) == r"BM"
  1920. assert latex(symbols("hbar")) == r"\hbar"
  1921. # Check a few combinations
  1922. assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
  1923. assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
  1924. assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
  1925. # Check a couple big, ugly combinations
  1926. assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
  1927. r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
  1928. assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
  1929. r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
  1930. def test_greek_symbols():
  1931. assert latex(Symbol('alpha')) == r'\alpha'
  1932. assert latex(Symbol('beta')) == r'\beta'
  1933. assert latex(Symbol('gamma')) == r'\gamma'
  1934. assert latex(Symbol('delta')) == r'\delta'
  1935. assert latex(Symbol('epsilon')) == r'\epsilon'
  1936. assert latex(Symbol('zeta')) == r'\zeta'
  1937. assert latex(Symbol('eta')) == r'\eta'
  1938. assert latex(Symbol('theta')) == r'\theta'
  1939. assert latex(Symbol('iota')) == r'\iota'
  1940. assert latex(Symbol('kappa')) == r'\kappa'
  1941. assert latex(Symbol('lambda')) == r'\lambda'
  1942. assert latex(Symbol('mu')) == r'\mu'
  1943. assert latex(Symbol('nu')) == r'\nu'
  1944. assert latex(Symbol('xi')) == r'\xi'
  1945. assert latex(Symbol('omicron')) == r'o'
  1946. assert latex(Symbol('pi')) == r'\pi'
  1947. assert latex(Symbol('rho')) == r'\rho'
  1948. assert latex(Symbol('sigma')) == r'\sigma'
  1949. assert latex(Symbol('tau')) == r'\tau'
  1950. assert latex(Symbol('upsilon')) == r'\upsilon'
  1951. assert latex(Symbol('phi')) == r'\phi'
  1952. assert latex(Symbol('chi')) == r'\chi'
  1953. assert latex(Symbol('psi')) == r'\psi'
  1954. assert latex(Symbol('omega')) == r'\omega'
  1955. assert latex(Symbol('Alpha')) == r'\mathrm{A}'
  1956. assert latex(Symbol('Beta')) == r'\mathrm{B}'
  1957. assert latex(Symbol('Gamma')) == r'\Gamma'
  1958. assert latex(Symbol('Delta')) == r'\Delta'
  1959. assert latex(Symbol('Epsilon')) == r'\mathrm{E}'
  1960. assert latex(Symbol('Zeta')) == r'\mathrm{Z}'
  1961. assert latex(Symbol('Eta')) == r'\mathrm{H}'
  1962. assert latex(Symbol('Theta')) == r'\Theta'
  1963. assert latex(Symbol('Iota')) == r'\mathrm{I}'
  1964. assert latex(Symbol('Kappa')) == r'\mathrm{K}'
  1965. assert latex(Symbol('Lambda')) == r'\Lambda'
  1966. assert latex(Symbol('Mu')) == r'\mathrm{M}'
  1967. assert latex(Symbol('Nu')) == r'\mathrm{N}'
  1968. assert latex(Symbol('Xi')) == r'\Xi'
  1969. assert latex(Symbol('Omicron')) == r'\mathrm{O}'
  1970. assert latex(Symbol('Pi')) == r'\Pi'
  1971. assert latex(Symbol('Rho')) == r'\mathrm{P}'
  1972. assert latex(Symbol('Sigma')) == r'\Sigma'
  1973. assert latex(Symbol('Tau')) == r'\mathrm{T}'
  1974. assert latex(Symbol('Upsilon')) == r'\Upsilon'
  1975. assert latex(Symbol('Phi')) == r'\Phi'
  1976. assert latex(Symbol('Chi')) == r'\mathrm{X}'
  1977. assert latex(Symbol('Psi')) == r'\Psi'
  1978. assert latex(Symbol('Omega')) == r'\Omega'
  1979. assert latex(Symbol('varepsilon')) == r'\varepsilon'
  1980. assert latex(Symbol('varkappa')) == r'\varkappa'
  1981. assert latex(Symbol('varphi')) == r'\varphi'
  1982. assert latex(Symbol('varpi')) == r'\varpi'
  1983. assert latex(Symbol('varrho')) == r'\varrho'
  1984. assert latex(Symbol('varsigma')) == r'\varsigma'
  1985. assert latex(Symbol('vartheta')) == r'\vartheta'
  1986. def test_fancyset_symbols():
  1987. assert latex(S.Rationals) == r'\mathbb{Q}'
  1988. assert latex(S.Naturals) == r'\mathbb{N}'
  1989. assert latex(S.Naturals0) == r'\mathbb{N}_0'
  1990. assert latex(S.Integers) == r'\mathbb{Z}'
  1991. assert latex(S.Reals) == r'\mathbb{R}'
  1992. assert latex(S.Complexes) == r'\mathbb{C}'
  1993. @XFAIL
  1994. def test_builtin_without_args_mismatched_names():
  1995. assert latex(CosineTransform) == r'\mathcal{COS}'
  1996. def test_builtin_no_args():
  1997. assert latex(Chi) == r'\operatorname{Chi}'
  1998. assert latex(beta) == r'\operatorname{B}'
  1999. assert latex(gamma) == r'\Gamma'
  2000. assert latex(KroneckerDelta) == r'\delta'
  2001. assert latex(DiracDelta) == r'\delta'
  2002. assert latex(lowergamma) == r'\gamma'
  2003. def test_issue_6853():
  2004. p = Function('Pi')
  2005. assert latex(p(x)) == r"\Pi{\left(x \right)}"
  2006. def test_Mul():
  2007. e = Mul(-2, x + 1, evaluate=False)
  2008. assert latex(e) == r'- 2 \left(x + 1\right)'
  2009. e = Mul(2, x + 1, evaluate=False)
  2010. assert latex(e) == r'2 \left(x + 1\right)'
  2011. e = Mul(S.Half, x + 1, evaluate=False)
  2012. assert latex(e) == r'\frac{x + 1}{2}'
  2013. e = Mul(y, x + 1, evaluate=False)
  2014. assert latex(e) == r'y \left(x + 1\right)'
  2015. e = Mul(-y, x + 1, evaluate=False)
  2016. assert latex(e) == r'- y \left(x + 1\right)'
  2017. e = Mul(-2, x + 1)
  2018. assert latex(e) == r'- 2 x - 2'
  2019. e = Mul(2, x + 1)
  2020. assert latex(e) == r'2 x + 2'
  2021. def test_Pow():
  2022. e = Pow(2, 2, evaluate=False)
  2023. assert latex(e) == r'2^{2}'
  2024. assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
  2025. x2 = Symbol(r'x^2')
  2026. assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
  2027. def test_issue_7180():
  2028. assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
  2029. assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
  2030. def test_issue_8409():
  2031. assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
  2032. def test_issue_8470():
  2033. from sympy.parsing.sympy_parser import parse_expr
  2034. e = parse_expr("-B*A", evaluate=False)
  2035. assert latex(e) == r"A \left(- B\right)"
  2036. def test_issue_15439():
  2037. x = MatrixSymbol('x', 2, 2)
  2038. y = MatrixSymbol('y', 2, 2)
  2039. assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
  2040. assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
  2041. assert latex((x * y).subs(x, -x)) == r"\left(- x\right) y"
  2042. def test_issue_2934():
  2043. assert latex(Symbol(r'\frac{a_1}{b_1}')) == r'\frac{a_1}{b_1}'
  2044. def test_issue_10489():
  2045. latexSymbolWithBrace = r'C_{x_{0}}'
  2046. s = Symbol(latexSymbolWithBrace)
  2047. assert latex(s) == latexSymbolWithBrace
  2048. assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
  2049. def test_issue_12886():
  2050. m__1, l__1 = symbols('m__1, l__1')
  2051. assert latex(m__1**2 + l__1**2) == \
  2052. r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
  2053. def test_issue_13559():
  2054. from sympy.parsing.sympy_parser import parse_expr
  2055. expr = parse_expr('5/1', evaluate=False)
  2056. assert latex(expr) == r"\frac{5}{1}"
  2057. def test_issue_13651():
  2058. expr = c + Mul(-1, a + b, evaluate=False)
  2059. assert latex(expr) == r"c - \left(a + b\right)"
  2060. def test_latex_UnevaluatedExpr():
  2061. x = symbols("x")
  2062. he = UnevaluatedExpr(1/x)
  2063. assert latex(he) == latex(1/x) == r"\frac{1}{x}"
  2064. assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
  2065. assert latex(he + 1) == r"1 + \frac{1}{x}"
  2066. assert latex(x*he) == r"x \frac{1}{x}"
  2067. def test_MatrixElement_printing():
  2068. # test cases for issue #11821
  2069. A = MatrixSymbol("A", 1, 3)
  2070. B = MatrixSymbol("B", 1, 3)
  2071. C = MatrixSymbol("C", 1, 3)
  2072. assert latex(A[0, 0]) == r"A_{0, 0}"
  2073. assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
  2074. F = C[0, 0].subs(C, A - B)
  2075. assert latex(F) == r"\left(A - B\right)_{0, 0}"
  2076. i, j, k = symbols("i j k")
  2077. M = MatrixSymbol("M", k, k)
  2078. N = MatrixSymbol("N", k, k)
  2079. assert latex((M*N)[i, j]) == \
  2080. r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
  2081. def test_MatrixSymbol_printing():
  2082. # test cases for issue #14237
  2083. A = MatrixSymbol("A", 3, 3)
  2084. B = MatrixSymbol("B", 3, 3)
  2085. C = MatrixSymbol("C", 3, 3)
  2086. assert latex(-A) == r"- A"
  2087. assert latex(A - A*B - B) == r"A - A B - B"
  2088. assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
  2089. def test_KroneckerProduct_printing():
  2090. A = MatrixSymbol('A', 3, 3)
  2091. B = MatrixSymbol('B', 2, 2)
  2092. assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
  2093. def test_Series_printing():
  2094. tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
  2095. tf2 = TransferFunction(x - y, x + y, y)
  2096. tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
  2097. assert latex(Series(tf1, tf2)) == \
  2098. r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)'
  2099. assert latex(Series(tf1, tf2, tf3)) == \
  2100. r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)'
  2101. assert latex(Series(-tf2, tf1)) == \
  2102. r'\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)'
  2103. M_1 = Matrix([[5/s], [5/(2*s)]])
  2104. T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
  2105. M_2 = Matrix([[5, 6*s**3]])
  2106. T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
  2107. # Brackets
  2108. assert latex(T_1*(T_2 + T_2)) == \
  2109. r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} &' \
  2110. r' \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)' \
  2111. == latex(MIMOSeries(MIMOParallel(T_2, T_2), T_1))
  2112. # No Brackets
  2113. M_3 = Matrix([[5, 6], [6, 5/s]])
  2114. T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
  2115. assert latex(T_1*T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}' \
  2116. r'\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & ' \
  2117. r'\frac{5}{s}\end{matrix}\right]_\tau' == latex(MIMOParallel(MIMOSeries(T_2, T_1), T_3))
  2118. def test_TransferFunction_printing():
  2119. tf1 = TransferFunction(x - 1, x + 1, x)
  2120. assert latex(tf1) == r"\frac{x - 1}{x + 1}"
  2121. tf2 = TransferFunction(x + 1, 2 - y, x)
  2122. assert latex(tf2) == r"\frac{x + 1}{2 - y}"
  2123. tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
  2124. assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"
  2125. def test_Parallel_printing():
  2126. tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
  2127. tf2 = TransferFunction(x - y, x + y, y)
  2128. assert latex(Parallel(tf1, tf2)) == \
  2129. r'\frac{x y^{2} - z}{- t^{3} + y^{3}} + \frac{x - y}{x + y}'
  2130. assert latex(Parallel(-tf2, tf1)) == \
  2131. r'\frac{- x + y}{x + y} + \frac{x y^{2} - z}{- t^{3} + y^{3}}'
  2132. M_1 = Matrix([[5, 6], [6, 5/s]])
  2133. T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
  2134. M_2 = Matrix([[5/s, 6], [6, 5/(s - 1)]])
  2135. T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
  2136. M_3 = Matrix([[6, 5/(s*(s - 1))], [5, 6]])
  2137. T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
  2138. assert latex(T_1 + T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]' \
  2139. r'_\tau + \left[\begin{matrix}\frac{5}{s} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s - 1}\end{matrix}\right]_\tau + \left[\begin{matrix}' \
  2140. r'\frac{6}{1} & \frac{5}{s \left(s - 1\right)}\\\frac{5}{1} & \frac{6}{1}\end{matrix}\right]_\tau' \
  2141. == latex(MIMOParallel(T_1, T_2, T_3)) == latex(MIMOParallel(T_1, MIMOParallel(T_2, T_3))) == latex(MIMOParallel(MIMOParallel(T_1, T_2), T_3))
  2142. def test_TransferFunctionMatrix_printing():
  2143. tf1 = TransferFunction(p, p + x, p)
  2144. tf2 = TransferFunction(-s + p, p + s, p)
  2145. tf3 = TransferFunction(p, y**2 + 2*y + 3, p)
  2146. assert latex(TransferFunctionMatrix([[tf1], [tf2]])) == \
  2147. r'\left[\begin{matrix}\frac{p}{p + x}\\\frac{p - s}{p + s}\end{matrix}\right]_\tau'
  2148. assert latex(TransferFunctionMatrix([[tf1, tf2], [tf3, -tf1]])) == \
  2149. r'\left[\begin{matrix}\frac{p}{p + x} & \frac{p - s}{p + s}\\\frac{p}{y^{2} + 2 y + 3} & \frac{\left(-1\right) p}{p + x}\end{matrix}\right]_\tau'
  2150. def test_Feedback_printing():
  2151. tf1 = TransferFunction(p, p + x, p)
  2152. tf2 = TransferFunction(-s + p, p + s, p)
  2153. # Negative Feedback (Default)
  2154. assert latex(Feedback(tf1, tf2)) == \
  2155. r'\frac{\frac{p}{p + x}}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2156. assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
  2157. r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2158. # Positive Feedback
  2159. assert latex(Feedback(tf1, tf2, 1)) == \
  2160. r'\frac{\frac{p}{p + x}}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2161. assert latex(Feedback(tf1*tf2, sign=1)) == \
  2162. r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2163. def test_MIMOFeedback_printing():
  2164. tf1 = TransferFunction(1, s, s)
  2165. tf2 = TransferFunction(s, s**2 - 1, s)
  2166. tf3 = TransferFunction(s, s - 1, s)
  2167. tf4 = TransferFunction(s**2, s**2 - 1, s)
  2168. tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
  2169. tfm_2 = TransferFunctionMatrix([[tf4, tf3], [tf2, tf1]])
  2170. # Negative Feedback (Default)
  2171. assert latex(MIMOFeedback(tfm_1, tfm_2)) == \
  2172. r'\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[' \
  2173. r'\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}' \
  2174. r'\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau'
  2175. # Positive Feedback
  2176. assert latex(MIMOFeedback(tfm_1*tfm_2, tfm_1, 1)) == \
  2177. r'\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left' \
  2178. r'[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
  2179. r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
  2180. r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1}' \
  2181. r' & \frac{1}{s}\end{matrix}\right]_\tau'
  2182. def test_Quaternion_latex_printing():
  2183. q = Quaternion(x, y, z, t)
  2184. assert latex(q) == r"x + y i + z j + t k"
  2185. q = Quaternion(x, y, z, x*t)
  2186. assert latex(q) == r"x + y i + z j + t x k"
  2187. q = Quaternion(x, y, z, x + t)
  2188. assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
  2189. def test_TensorProduct_printing():
  2190. from sympy.tensor.functions import TensorProduct
  2191. A = MatrixSymbol("A", 3, 3)
  2192. B = MatrixSymbol("B", 3, 3)
  2193. assert latex(TensorProduct(A, B)) == r"A \otimes B"
  2194. def test_WedgeProduct_printing():
  2195. from sympy.diffgeom.rn import R2
  2196. from sympy.diffgeom import WedgeProduct
  2197. wp = WedgeProduct(R2.dx, R2.dy)
  2198. assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
  2199. def test_issue_9216():
  2200. expr_1 = Pow(1, -1, evaluate=False)
  2201. assert latex(expr_1) == r"1^{-1}"
  2202. expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
  2203. assert latex(expr_2) == r"1^{1^{-1}}"
  2204. expr_3 = Pow(3, -2, evaluate=False)
  2205. assert latex(expr_3) == r"\frac{1}{9}"
  2206. expr_4 = Pow(1, -2, evaluate=False)
  2207. assert latex(expr_4) == r"1^{-2}"
  2208. def test_latex_printer_tensor():
  2209. from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
  2210. L = TensorIndexType("L")
  2211. i, j, k, l = tensor_indices("i j k l", L)
  2212. i0 = tensor_indices("i_0", L)
  2213. A, B, C, D = tensor_heads("A B C D", [L])
  2214. H = TensorHead("H", [L, L])
  2215. K = TensorHead("K", [L, L, L, L])
  2216. assert latex(i) == r"{}^{i}"
  2217. assert latex(-i) == r"{}_{i}"
  2218. expr = A(i)
  2219. assert latex(expr) == r"A{}^{i}"
  2220. expr = A(i0)
  2221. assert latex(expr) == r"A{}^{i_{0}}"
  2222. expr = A(-i)
  2223. assert latex(expr) == r"A{}_{i}"
  2224. expr = -3*A(i)
  2225. assert latex(expr) == r"-3A{}^{i}"
  2226. expr = K(i, j, -k, -i0)
  2227. assert latex(expr) == r"K{}^{ij}{}_{ki_{0}}"
  2228. expr = K(i, -j, -k, i0)
  2229. assert latex(expr) == r"K{}^{i}{}_{jk}{}^{i_{0}}"
  2230. expr = K(i, -j, k, -i0)
  2231. assert latex(expr) == r"K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
  2232. expr = H(i, -j)
  2233. assert latex(expr) == r"H{}^{i}{}_{j}"
  2234. expr = H(i, j)
  2235. assert latex(expr) == r"H{}^{ij}"
  2236. expr = H(-i, -j)
  2237. assert latex(expr) == r"H{}_{ij}"
  2238. expr = (1+x)*A(i)
  2239. assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
  2240. expr = H(i, -i)
  2241. assert latex(expr) == r"H{}^{L_{0}}{}_{L_{0}}"
  2242. expr = H(i, -j)*A(j)*B(k)
  2243. assert latex(expr) == r"H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
  2244. expr = A(i) + 3*B(i)
  2245. assert latex(expr) == r"3B{}^{i} + A{}^{i}"
  2246. # Test ``TensorElement``:
  2247. from sympy.tensor.tensor import TensorElement
  2248. expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
  2249. assert latex(expr) == r'K{}^{i=3,j,k=2,l}'
  2250. expr = TensorElement(K(i, j, k, l), {i: 3})
  2251. assert latex(expr) == r'K{}^{i=3,jkl}'
  2252. expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
  2253. assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2,l}'
  2254. expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
  2255. assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
  2256. expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
  2257. assert latex(expr) == r'K{}^{i=3,j}{}_{k=2,l}'
  2258. expr = TensorElement(K(i, j, -k, -l), {i: 3})
  2259. assert latex(expr) == r'K{}^{i=3,j}{}_{kl}'
  2260. expr = PartialDerivative(A(i), A(i))
  2261. assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
  2262. expr = PartialDerivative(A(-i), A(-j))
  2263. assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
  2264. expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
  2265. assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
  2266. expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
  2267. assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
  2268. expr = PartialDerivative(3*A(-i), A(-j), A(-n))
  2269. assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
  2270. def test_multiline_latex():
  2271. a, b, c, d, e, f = symbols('a b c d e f')
  2272. expr = -a + 2*b -3*c +4*d -5*e
  2273. expected = r"\begin{eqnarray}" + "\n"\
  2274. r"f & = &- a \nonumber\\" + "\n"\
  2275. r"& & + 2 b \nonumber\\" + "\n"\
  2276. r"& & - 3 c \nonumber\\" + "\n"\
  2277. r"& & + 4 d \nonumber\\" + "\n"\
  2278. r"& & - 5 e " + "\n"\
  2279. r"\end{eqnarray}"
  2280. assert multiline_latex(f, expr, environment="eqnarray") == expected
  2281. expected2 = r'\begin{eqnarray}' + '\n'\
  2282. r'f & = &- a + 2 b \nonumber\\' + '\n'\
  2283. r'& & - 3 c + 4 d \nonumber\\' + '\n'\
  2284. r'& & - 5 e ' + '\n'\
  2285. r'\end{eqnarray}'
  2286. assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
  2287. expected3 = r'\begin{eqnarray}' + '\n'\
  2288. r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
  2289. r'& & + 4 d - 5 e ' + '\n'\
  2290. r'\end{eqnarray}'
  2291. assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
  2292. expected3dots = r'\begin{eqnarray}' + '\n'\
  2293. r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
  2294. r'& & + 4 d - 5 e ' + '\n'\
  2295. r'\end{eqnarray}'
  2296. assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
  2297. expected3align = r'\begin{align*}' + '\n'\
  2298. r'f = &- a + 2 b - 3 c \\'+ '\n'\
  2299. r'& + 4 d - 5 e ' + '\n'\
  2300. r'\end{align*}'
  2301. assert multiline_latex(f, expr, 3) == expected3align
  2302. assert multiline_latex(f, expr, 3, environment='align*') == expected3align
  2303. expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
  2304. r'f & = &- a + 2 b \nonumber\\' + '\n'\
  2305. r'& & - 3 c + 4 d \nonumber\\' + '\n'\
  2306. r'& & - 5 e ' + '\n'\
  2307. r'\end{IEEEeqnarray}'
  2308. assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
  2309. raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
  2310. def test_issue_15353():
  2311. a, x = symbols('a x')
  2312. # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
  2313. sol = ConditionSet(
  2314. Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
  2315. assert latex(sol) == \
  2316. r'\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in ' \
  2317. r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
  2318. r'\cos{\left(a x \right)} = 0 \right\}'
  2319. def test_latex_symbolic_probability():
  2320. mu = symbols("mu")
  2321. sigma = symbols("sigma", positive=True)
  2322. X = Normal("X", mu, sigma)
  2323. assert latex(Expectation(X)) == r'\operatorname{E}\left[X\right]'
  2324. assert latex(Variance(X)) == r'\operatorname{Var}\left(X\right)'
  2325. assert latex(Probability(X > 0)) == r'\operatorname{P}\left(X > 0\right)'
  2326. Y = Normal("Y", mu, sigma)
  2327. assert latex(Covariance(X, Y)) == r'\operatorname{Cov}\left(X, Y\right)'
  2328. def test_trace():
  2329. # Issue 15303
  2330. from sympy.matrices.expressions.trace import trace
  2331. A = MatrixSymbol("A", 2, 2)
  2332. assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
  2333. assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
  2334. def test_print_basic():
  2335. # Issue 15303
  2336. from sympy.core.basic import Basic
  2337. from sympy.core.expr import Expr
  2338. # dummy class for testing printing where the function is not
  2339. # implemented in latex.py
  2340. class UnimplementedExpr(Expr):
  2341. def __new__(cls, e):
  2342. return Basic.__new__(cls, e)
  2343. # dummy function for testing
  2344. def unimplemented_expr(expr):
  2345. return UnimplementedExpr(expr).doit()
  2346. # override class name to use superscript / subscript
  2347. def unimplemented_expr_sup_sub(expr):
  2348. result = UnimplementedExpr(expr)
  2349. result.__class__.__name__ = 'UnimplementedExpr_x^1'
  2350. return result
  2351. assert latex(unimplemented_expr(x)) == r'\operatorname{UnimplementedExpr}\left(x\right)'
  2352. assert latex(unimplemented_expr(x**2)) == \
  2353. r'\operatorname{UnimplementedExpr}\left(x^{2}\right)'
  2354. assert latex(unimplemented_expr_sup_sub(x)) == \
  2355. r'\operatorname{UnimplementedExpr^{1}_{x}}\left(x\right)'
  2356. def test_MatrixSymbol_bold():
  2357. # Issue #15871
  2358. from sympy.matrices.expressions.trace import trace
  2359. A = MatrixSymbol("A", 2, 2)
  2360. assert latex(trace(A), mat_symbol_style='bold') == \
  2361. r"\operatorname{tr}\left(\mathbf{A} \right)"
  2362. assert latex(trace(A), mat_symbol_style='plain') == \
  2363. r"\operatorname{tr}\left(A \right)"
  2364. A = MatrixSymbol("A", 3, 3)
  2365. B = MatrixSymbol("B", 3, 3)
  2366. C = MatrixSymbol("C", 3, 3)
  2367. assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
  2368. assert latex(A - A*B - B, mat_symbol_style='bold') == \
  2369. r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
  2370. assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
  2371. r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
  2372. A_k = MatrixSymbol("A_k", 3, 3)
  2373. assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"
  2374. A = MatrixSymbol(r"\nabla_k", 3, 3)
  2375. assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"
  2376. def test_AppliedPermutation():
  2377. p = Permutation(0, 1, 2)
  2378. x = Symbol('x')
  2379. assert latex(AppliedPermutation(p, x)) == \
  2380. r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
  2381. def test_PermutationMatrix():
  2382. p = Permutation(0, 1, 2)
  2383. assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
  2384. p = Permutation(0, 3)(1, 2)
  2385. assert latex(PermutationMatrix(p)) == \
  2386. r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
  2387. def test_issue_21758():
  2388. from sympy.functions.elementary.piecewise import piecewise_fold
  2389. from sympy.series.fourier import FourierSeries
  2390. x = Symbol('x')
  2391. k, n = symbols('k n')
  2392. fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula(
  2393. Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)),
  2394. (0, True))*sin(n*x)/pi, (n, 1, oo))))
  2395. assert latex(piecewise_fold(fo)) == '\\begin{cases} 2 \\sin{\\left(x \\right)}' \
  2396. ' - \\sin{\\left(2 x \\right)} + \\frac{2 \\sin{\\left(3 x \\right)}}{3} +' \
  2397. ' \\ldots & \\text{for}\\: n > -\\infty \\wedge n < \\infty \\wedge ' \
  2398. 'n \\neq 0 \\\\0 & \\text{otherwise} \\end{cases}'
  2399. assert latex(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)),
  2400. SeqFormula(0, (n, 1, oo))))) == '0'
  2401. def test_imaginary_unit():
  2402. assert latex(1 + I) == r'1 + i'
  2403. assert latex(1 + I, imaginary_unit='i') == r'1 + i'
  2404. assert latex(1 + I, imaginary_unit='j') == r'1 + j'
  2405. assert latex(1 + I, imaginary_unit='foo') == r'1 + foo'
  2406. assert latex(I, imaginary_unit="ti") == r'\text{i}'
  2407. assert latex(I, imaginary_unit="tj") == r'\text{j}'
  2408. def test_text_re_im():
  2409. assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
  2410. assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
  2411. assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
  2412. assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
  2413. def test_latex_diffgeom():
  2414. from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
  2415. from sympy.diffgeom.rn import R2
  2416. x,y = symbols('x y', real=True)
  2417. m = Manifold('M', 2)
  2418. assert latex(m) == r'\text{M}'
  2419. p = Patch('P', m)
  2420. assert latex(p) == r'\text{P}_{\text{M}}'
  2421. rect = CoordSystem('rect', p, [x, y])
  2422. assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
  2423. b = BaseScalarField(rect, 0)
  2424. assert latex(b) == r'\mathbf{x}'
  2425. g = Function('g')
  2426. s_field = g(R2.x, R2.y)
  2427. assert latex(Differential(s_field)) == \
  2428. r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
  2429. def test_unit_printing():
  2430. assert latex(5*meter) == r'5 \text{m}'
  2431. assert latex(3*gibibyte) == r'3 \text{gibibyte}'
  2432. assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
  2433. assert latex(4*micro*gram/second) == r'\frac{4 \mu \text{g}}{\text{s}}'
  2434. assert latex(5*milli*meter) == r'5 \text{m} \text{m}'
  2435. assert latex(milli) == r'\text{m}'
  2436. def test_issue_17092():
  2437. x_star = Symbol('x^*')
  2438. assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
  2439. def test_latex_decimal_separator():
  2440. x, y, z, t = symbols('x y z t')
  2441. k, m, n = symbols('k m n', integer=True)
  2442. f, g, h = symbols('f g h', cls=Function)
  2443. # comma decimal_separator
  2444. assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
  2445. assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
  2446. assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
  2447. assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')
  2448. # period decimal_separator
  2449. assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
  2450. assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
  2451. assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
  2452. assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')
  2453. # default decimal_separator
  2454. assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
  2455. assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
  2456. assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
  2457. assert(latex((1,)) == r'\left( 1,\right)')
  2458. assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') == r'18{,}02')
  2459. assert(latex(3.4*5.3, decimal_separator = 'comma') == r'18{,}02')
  2460. x = symbols('x')
  2461. y = symbols('y')
  2462. z = symbols('z')
  2463. assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma') == r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
  2464. assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
  2465. assert(latex(S(0.987), decimal_separator='comma') == r'0{,}987')
  2466. assert(latex(.3, decimal_separator='comma') == r'0{,}3')
  2467. assert(latex(S(.3), decimal_separator='comma') == r'0{,}3')
  2468. assert(latex(5.8*10**(-7), decimal_separator='comma') == r'5{,}8 \cdot 10^{-7}')
  2469. assert(latex(S(5.7)*10**(-7), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
  2470. assert(latex(S(5.7*10**(-7)), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
  2471. x = symbols('x')
  2472. assert(latex(1.2*x+3.4, decimal_separator='comma') == r'1{,}2 x + 3{,}4')
  2473. assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
  2474. # Error Handling tests
  2475. raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
  2476. raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
  2477. raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
  2478. def test_Str():
  2479. from sympy.core.symbol import Str
  2480. assert str(Str('x')) == r'x'
  2481. def test_latex_escape():
  2482. assert latex_escape(r"~^\&%$#_{}") == "".join([
  2483. r'\textasciitilde',
  2484. r'\textasciicircum',
  2485. r'\textbackslash',
  2486. r'\&',
  2487. r'\%',
  2488. r'\$',
  2489. r'\#',
  2490. r'\_',
  2491. r'\{',
  2492. r'\}',
  2493. ])
  2494. def test_emptyPrinter():
  2495. class MyObject:
  2496. def __repr__(self):
  2497. return "<MyObject with {...}>"
  2498. # unknown objects are monospaced
  2499. assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"
  2500. # even if they are nested within other objects
  2501. assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"
  2502. def test_global_settings():
  2503. import inspect
  2504. # settings should be visible in the signature of `latex`
  2505. assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
  2506. assert latex(I) == r'i'
  2507. try:
  2508. # but changing the defaults...
  2509. LatexPrinter.set_global_settings(imaginary_unit='j')
  2510. # ... should change the signature
  2511. assert inspect.signature(latex).parameters['imaginary_unit'].default == r'j'
  2512. assert latex(I) == r'j'
  2513. finally:
  2514. # there's no public API to undo this, but we need to make sure we do
  2515. # so as not to impact other tests
  2516. del LatexPrinter._global_settings['imaginary_unit']
  2517. # check we really did undo it
  2518. assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
  2519. assert latex(I) == r'i'
  2520. def test_pickleable():
  2521. # this tests that the _PrintFunction instance is pickleable
  2522. import pickle
  2523. assert pickle.loads(pickle.dumps(latex)) is latex
  2524. def test_printing_latex_array_expressions():
  2525. assert latex(ArraySymbol("A", (2, 3, 4))) == "A"
  2526. assert latex(ArrayElement("A", (2, 1/(1-x), 0))) == "{{A}_{2, \\frac{1}{1 - x}, 0}}"
  2527. M = MatrixSymbol("M", 3, 3)
  2528. N = MatrixSymbol("N", 3, 3)
  2529. assert latex(ArrayElement(M*N, [x, 0])) == "{{\\left(M N\\right)}_{x, 0}}"
  2530. def test_Array():
  2531. arr = Array(range(10))
  2532. assert latex(arr) == r'\left[\begin{matrix}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{matrix}\right]'
  2533. arr = Array(range(11))
  2534. # added empty arguments {}
  2535. assert latex(arr) == r'\left[\begin{array}{}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
  2536. def test_latex_with_unevaluated():
  2537. with evaluate(False):
  2538. assert latex(a * a) == r"a a"