test_polyfuncs.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. """Tests for high-level polynomials manipulation functions. """
  2. from sympy.polys.polyfuncs import (
  3. symmetrize, horner, interpolate, rational_interpolate, viete,
  4. )
  5. from sympy.polys.polyerrors import (
  6. MultivariatePolynomialError,
  7. )
  8. from sympy.core.singleton import S
  9. from sympy.core.symbol import symbols
  10. from sympy.testing.pytest import raises
  11. from sympy.abc import a, b, c, d, e, x, y, z
  12. def test_symmetrize():
  13. assert symmetrize(0, x, y, z) == (0, 0)
  14. assert symmetrize(1, x, y, z) == (1, 0)
  15. s1 = x + y + z
  16. s2 = x*y + x*z + y*z
  17. assert symmetrize(1) == (1, 0)
  18. assert symmetrize(1, formal=True) == (1, 0, [])
  19. assert symmetrize(x) == (x, 0)
  20. assert symmetrize(x + 1) == (x + 1, 0)
  21. assert symmetrize(x, x, y) == (x + y, -y)
  22. assert symmetrize(x + 1, x, y) == (x + y + 1, -y)
  23. assert symmetrize(x, x, y, z) == (s1, -y - z)
  24. assert symmetrize(x + 1, x, y, z) == (s1 + 1, -y - z)
  25. assert symmetrize(x**2, x, y, z) == (s1**2 - 2*s2, -y**2 - z**2)
  26. assert symmetrize(x**2 + y**2) == (-2*x*y + (x + y)**2, 0)
  27. assert symmetrize(x**2 - y**2) == (-2*x*y + (x + y)**2, -2*y**2)
  28. assert symmetrize(x**3 + y**2 + a*x**2 + b*y**3, x, y) == \
  29. (-3*x*y*(x + y) - 2*a*x*y + a*(x + y)**2 + (x + y)**3,
  30. y**2*(1 - a) + y**3*(b - 1))
  31. U = [u0, u1, u2] = symbols('u:3')
  32. assert symmetrize(x + 1, x, y, z, formal=True, symbols=U) == \
  33. (u0 + 1, -y - z, [(u0, x + y + z), (u1, x*y + x*z + y*z), (u2, x*y*z)])
  34. assert symmetrize([1, 2, 3]) == [(1, 0), (2, 0), (3, 0)]
  35. assert symmetrize([1, 2, 3], formal=True) == ([(1, 0), (2, 0), (3, 0)], [])
  36. assert symmetrize([x + y, x - y]) == [(x + y, 0), (x + y, -2*y)]
  37. def test_horner():
  38. assert horner(0) == 0
  39. assert horner(1) == 1
  40. assert horner(x) == x
  41. assert horner(x + 1) == x + 1
  42. assert horner(x**2 + 1) == x**2 + 1
  43. assert horner(x**2 + x) == (x + 1)*x
  44. assert horner(x**2 + x + 1) == (x + 1)*x + 1
  45. assert horner(
  46. 9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) == (((9*x + 8)*x + 7)*x + 6)*x + 5
  47. assert horner(
  48. a*x**4 + b*x**3 + c*x**2 + d*x + e) == (((a*x + b)*x + c)*x + d)*x + e
  49. assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=x) == ((
  50. 4*y + 2)*x*y + (2*y + 1)*y)*x
  51. assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=y) == ((
  52. 4*x + 2)*y*x + (2*x + 1)*x)*y
  53. def test_interpolate():
  54. assert interpolate([1, 4, 9, 16], x) == x**2
  55. assert interpolate([1, 4, 9, 25], x) == S(3)*x**3/2 - S(8)*x**2 + S(33)*x/2 - 9
  56. assert interpolate([(1, 1), (2, 4), (3, 9)], x) == x**2
  57. assert interpolate([(1, 2), (2, 5), (3, 10)], x) == 1 + x**2
  58. assert interpolate({1: 2, 2: 5, 3: 10}, x) == 1 + x**2
  59. assert interpolate({5: 2, 7: 5, 8: 10, 9: 13}, x) == \
  60. -S(13)*x**3/24 + S(12)*x**2 - S(2003)*x/24 + 187
  61. assert interpolate([(1, 3), (0, 6), (2, 5), (5, 7), (-2, 4)], x) == \
  62. S(-61)*x**4/280 + S(247)*x**3/210 + S(139)*x**2/280 - S(1871)*x/420 + 6
  63. assert interpolate((9, 4, 9), 3) == 9
  64. assert interpolate((1, 9, 16), 1) is S.One
  65. assert interpolate(((x, 1), (2, 3)), x) is S.One
  66. assert interpolate({x: 1, 2: 3}, x) is S.One
  67. assert interpolate(((2, x), (1, 3)), x) == x**2 - 4*x + 6
  68. def test_rational_interpolate():
  69. x, y = symbols('x,y')
  70. xdata = [1, 2, 3, 4, 5, 6]
  71. ydata1 = [120, 150, 200, 255, 312, 370]
  72. ydata2 = [-210, -35, 105, 231, 350, 465]
  73. assert rational_interpolate(list(zip(xdata, ydata1)), 2) == (
  74. (60*x**2 + 60)/x )
  75. assert rational_interpolate(list(zip(xdata, ydata1)), 3) == (
  76. (60*x**2 + 60)/x )
  77. assert rational_interpolate(list(zip(xdata, ydata2)), 2, X=y) == (
  78. (105*y**2 - 525)/(y + 1) )
  79. xdata = list(range(1,11))
  80. ydata = [-1923885361858460, -5212158811973685, -9838050145867125,
  81. -15662936261217245, -22469424125057910, -30073793365223685,
  82. -38332297297028735, -47132954289530109, -56387719094026320,
  83. -66026548943876885]
  84. assert rational_interpolate(list(zip(xdata, ydata)), 5) == (
  85. (-12986226192544605*x**4 +
  86. 8657484128363070*x**3 - 30301194449270745*x**2 + 4328742064181535*x
  87. - 4328742064181535)/(x**3 + 9*x**2 - 3*x + 11))
  88. def test_viete():
  89. r1, r2 = symbols('r1, r2')
  90. assert viete(
  91. a*x**2 + b*x + c, [r1, r2], x) == [(r1 + r2, -b/a), (r1*r2, c/a)]
  92. raises(ValueError, lambda: viete(1, [], x))
  93. raises(ValueError, lambda: viete(x**2 + 1, [r1]))
  94. raises(MultivariatePolynomialError, lambda: viete(x + y, [r1]))