123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- """Tests for sparse distributed modules. """
- from sympy.polys.distributedmodules import (
- sdm_monomial_mul, sdm_monomial_deg, sdm_monomial_divides,
- sdm_add, sdm_LM, sdm_LT, sdm_mul_term, sdm_zero, sdm_deg,
- sdm_LC, sdm_from_dict,
- sdm_spoly, sdm_ecart, sdm_nf_mora, sdm_groebner,
- sdm_from_vector, sdm_to_vector, sdm_monomial_lcm
- )
- from sympy.polys.orderings import lex, grlex, InverseOrder
- from sympy.polys.domains import QQ
- from sympy.abc import x, y, z
- def test_sdm_monomial_mul():
- assert sdm_monomial_mul((1, 1, 0), (1, 3)) == (1, 2, 3)
- def test_sdm_monomial_deg():
- assert sdm_monomial_deg((5, 2, 1)) == 3
- def test_sdm_monomial_lcm():
- assert sdm_monomial_lcm((1, 2, 3), (1, 5, 0)) == (1, 5, 3)
- def test_sdm_monomial_divides():
- assert sdm_monomial_divides((1, 0, 0), (1, 0, 0)) is True
- assert sdm_monomial_divides((1, 0, 0), (1, 2, 1)) is True
- assert sdm_monomial_divides((5, 1, 1), (5, 2, 1)) is True
- assert sdm_monomial_divides((1, 0, 0), (2, 0, 0)) is False
- assert sdm_monomial_divides((1, 1, 0), (1, 0, 0)) is False
- assert sdm_monomial_divides((5, 1, 2), (5, 0, 1)) is False
- def test_sdm_LC():
- assert sdm_LC([((1, 2, 3), QQ(5))], QQ) == QQ(5)
- def test_sdm_from_dict():
- dic = {(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1), (1, 0, 2, 1): QQ(1),
- (1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)}
- assert sdm_from_dict(dic, grlex) == \
- [((1, 2, 1, 1), QQ(1)), ((1, 1, 2, 1), QQ(1)),
- ((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))]
- # TODO test to_dict?
- def test_sdm_add():
- assert sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ) == \
- [((2, 0, 0), QQ(1)), ((1, 1, 1), QQ(1))]
- assert sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ) == []
- assert sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ) == \
- [((1, 0, 0), QQ(3))]
- assert sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ) == \
- [((1, 1, 0), QQ(1)), ((1, 0, 1), QQ(1))]
- def test_sdm_LM():
- dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)}
- assert sdm_LM(sdm_from_dict(dic, lex)) == (4, 0, 1)
- def test_sdm_LT():
- dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)}
- assert sdm_LT(sdm_from_dict(dic, lex)) == ((4, 0, 1), QQ(3))
- def test_sdm_mul_term():
- assert sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ) == []
- assert sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ) == []
- assert sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ) == \
- [((1, 1, 0), QQ(1))]
- f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))]
- assert sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ) == \
- [((2, 1, 2), QQ(8)), ((1, 2, 1), QQ(6))]
- def test_sdm_zero():
- assert sdm_zero() == []
- def test_sdm_deg():
- assert sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)]) == 7
- def test_sdm_spoly():
- f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))]
- g = [((2, 3, 0), QQ(1))]
- h = [((1, 2, 3), QQ(1))]
- assert sdm_spoly(f, h, lex, QQ) == []
- assert sdm_spoly(f, g, lex, QQ) == [((1, 2, 1), QQ(1))]
- def test_sdm_ecart():
- assert sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)]) == 0
- assert sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)]) == 3
- def test_sdm_nf_mora():
- f = sdm_from_dict({(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1),
- (1, 0, 2, 1): QQ(1), (1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)},
- grlex)
- f1 = sdm_from_dict({(1, 1, 1, 0): QQ(1), (1, 0, 2, 0): QQ(1),
- (1, 0, 0, 0): QQ(-1)}, grlex)
- f2 = sdm_from_dict({(1, 1, 1, 0): QQ(1)}, grlex)
- (id0, id1, id2) = [sdm_from_dict({(i, 0, 0, 0): QQ(1)}, grlex)
- for i in range(3)]
- assert sdm_nf_mora(f, [f1, f2], grlex, QQ, phantom=(id0, [id1, id2])) == \
- ([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1)),
- ((1, 1, 0, 1), QQ(1))],
- [((1, 1, 0, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))])
- assert sdm_nf_mora(f, [f2, f1], grlex, QQ, phantom=(id0, [id2, id1])) == \
- ([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))],
- [((2, 1, 0, 1), QQ(-1)), ((2, 0, 1, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))])
- f = sdm_from_vector([x*z, y**2 + y*z - z, y], lex, QQ, gens=[x, y, z])
- f1 = sdm_from_vector([x, y, 1], lex, QQ, gens=[x, y, z])
- f2 = sdm_from_vector([x*y, z, z**2], lex, QQ, gens=[x, y, z])
- assert sdm_nf_mora(f, [f1, f2], lex, QQ) == \
- sdm_nf_mora(f, [f2, f1], lex, QQ) == \
- [((1, 0, 1, 1), QQ(1)), ((1, 0, 0, 1), QQ(-1)), ((0, 1, 1, 0), QQ(-1)),
- ((0, 1, 0, 1), QQ(1))]
- def test_conversion():
- f = [x**2 + y**2, 2*z]
- g = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))]
- assert sdm_to_vector(g, [x, y, z], QQ) == f
- assert sdm_from_vector(f, lex, QQ) == g
- assert sdm_from_vector(
- [x, 1], lex, QQ) == [((1, 0), QQ(1)), ((0, 1), QQ(1))]
- assert sdm_to_vector([((1, 1, 0, 0), 1)], [x, y, z], QQ, n=3) == [0, x, 0]
- assert sdm_from_vector([0, 0], lex, QQ, gens=[x, y]) == sdm_zero()
- def test_nontrivial():
- gens = [x, y, z]
- def contains(I, f):
- S = [sdm_from_vector([g], lex, QQ, gens=gens) for g in I]
- G = sdm_groebner(S, sdm_nf_mora, lex, QQ)
- return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens),
- G, lex, QQ) == sdm_zero()
- assert contains([x, y], x)
- assert contains([x, y], x + y)
- assert not contains([x, y], 1)
- assert not contains([x, y], z)
- assert contains([x**2 + y, x**2 + x], x - y)
- assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
- assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
- assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
- assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
- assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
- assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
- assert contains([x, 1 + x + y, 5 - 7*y], 1)
- assert contains(
- [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
- x**3)
- assert not contains(
- [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
- x**2 + y**2)
- # compare local order
- assert not contains([x*(1 + x + y), y*(1 + z)], x)
- assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
- def test_local():
- igrlex = InverseOrder(grlex)
- gens = [x, y, z]
- def contains(I, f):
- S = [sdm_from_vector([g], igrlex, QQ, gens=gens) for g in I]
- G = sdm_groebner(S, sdm_nf_mora, igrlex, QQ)
- return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens),
- G, lex, QQ) == sdm_zero()
- assert contains([x, y], x)
- assert contains([x, y], x + y)
- assert not contains([x, y], 1)
- assert not contains([x, y], z)
- assert contains([x**2 + y, x**2 + x], x - y)
- assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
- assert contains([x*(1 + x + y), y*(1 + z)], x)
- assert contains([x*(1 + x + y), y*(1 + z)], x + y)
- def test_uncovered_line():
- gens = [x, y]
- f1 = sdm_zero()
- f2 = sdm_from_vector([x, 0], lex, QQ, gens=gens)
- f3 = sdm_from_vector([0, y], lex, QQ, gens=gens)
- assert sdm_spoly(f1, f2, lex, QQ) == sdm_zero()
- assert sdm_spoly(f3, f2, lex, QQ) == sdm_zero()
- def test_chain_criterion():
- gens = [x]
- f1 = sdm_from_vector([1, x], grlex, QQ, gens=gens)
- f2 = sdm_from_vector([0, x - 2], grlex, QQ, gens=gens)
- assert len(sdm_groebner([f1, f2], sdm_nf_mora, grlex, QQ)) == 2
|