123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- """Tests for tools for constructing domains for expressions. """
- from sympy.polys.constructor import construct_domain
- from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX
- from sympy.polys.domains.realfield import RealField
- from sympy.polys.domains.complexfield import ComplexField
- from sympy.core import (Catalan, GoldenRatio)
- from sympy.core.numbers import (E, Float, I, Rational, pi)
- from sympy.core.singleton import S
- from sympy.functions.elementary.exponential import exp
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import sin
- from sympy.abc import x, y
- def test_construct_domain():
- assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
- assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
- assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
- assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
- assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
- result = construct_domain([3.14, 1, S.Half])
- assert isinstance(result[0], RealField)
- assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]
- result = construct_domain([3.14, I, S.Half])
- assert isinstance(result[0], ComplexField)
- assert result[1] == [CC(3.14), CC(1.0j), CC(0.5)]
- assert construct_domain([1.0+I]) == (CC, [CC(1.0, 1.0)])
- assert construct_domain([2.0+3.0*I]) == (CC, [CC(2.0, 3.0)])
- assert construct_domain([1, I]) == (ZZ_I, [ZZ_I(1, 0), ZZ_I(0, 1)])
- assert construct_domain([1, I/2]) == (QQ_I, [QQ_I(1, 0), QQ_I(0, S.Half)])
- assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
- assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])
- assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])
- assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
- assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])
- alg = QQ.algebraic_field(sqrt(2))
- assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \
- (alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))])
- alg = QQ.algebraic_field(sqrt(2) + sqrt(3))
- assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
- (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])
- dom = ZZ[x]
- assert construct_domain([2*x, 3]) == \
- (dom, [dom.convert(2*x), dom.convert(3)])
- dom = ZZ[x, y]
- assert construct_domain([2*x, 3*y]) == \
- (dom, [dom.convert(2*x), dom.convert(3*y)])
- dom = QQ[x]
- assert construct_domain([x/2, 3]) == \
- (dom, [dom.convert(x/2), dom.convert(3)])
- dom = QQ[x, y]
- assert construct_domain([x/2, 3*y]) == \
- (dom, [dom.convert(x/2), dom.convert(3*y)])
- dom = ZZ_I[x]
- assert construct_domain([2*x, I]) == \
- (dom, [dom.convert(2*x), dom.convert(I)])
- dom = ZZ_I[x, y]
- assert construct_domain([2*x, I*y]) == \
- (dom, [dom.convert(2*x), dom.convert(I*y)])
- dom = QQ_I[x]
- assert construct_domain([x/2, I]) == \
- (dom, [dom.convert(x/2), dom.convert(I)])
- dom = QQ_I[x, y]
- assert construct_domain([x/2, I*y]) == \
- (dom, [dom.convert(x/2), dom.convert(I*y)])
- dom = RR[x]
- assert construct_domain([x/2, 3.5]) == \
- (dom, [dom.convert(x/2), dom.convert(3.5)])
- dom = RR[x, y]
- assert construct_domain([x/2, 3.5*y]) == \
- (dom, [dom.convert(x/2), dom.convert(3.5*y)])
- dom = CC[x]
- assert construct_domain([I*x/2, 3.5]) == \
- (dom, [dom.convert(I*x/2), dom.convert(3.5)])
- dom = CC[x, y]
- assert construct_domain([I*x/2, 3.5*y]) == \
- (dom, [dom.convert(I*x/2), dom.convert(3.5*y)])
- dom = CC[x]
- assert construct_domain([x/2, I*3.5]) == \
- (dom, [dom.convert(x/2), dom.convert(I*3.5)])
- dom = CC[x, y]
- assert construct_domain([x/2, I*3.5*y]) == \
- (dom, [dom.convert(x/2), dom.convert(I*3.5*y)])
- dom = ZZ.frac_field(x)
- assert construct_domain([2/x, 3]) == \
- (dom, [dom.convert(2/x), dom.convert(3)])
- dom = ZZ.frac_field(x, y)
- assert construct_domain([2/x, 3*y]) == \
- (dom, [dom.convert(2/x), dom.convert(3*y)])
- dom = RR.frac_field(x)
- assert construct_domain([2/x, 3.5]) == \
- (dom, [dom.convert(2/x), dom.convert(3.5)])
- dom = RR.frac_field(x, y)
- assert construct_domain([2/x, 3.5*y]) == \
- (dom, [dom.convert(2/x), dom.convert(3.5*y)])
- dom = RealField(prec=336)[x]
- assert construct_domain([pi.evalf(100)*x]) == \
- (dom, [dom.convert(pi.evalf(100)*x)])
- assert construct_domain(2) == (ZZ, ZZ(2))
- assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
- assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))
- assert construct_domain({}) == (ZZ, {})
- def test_complex_exponential():
- w = exp(-I*2*pi/3, evaluate=False)
- alg = QQ.algebraic_field(w)
- assert construct_domain([w**2, w, 1], extension=True) == (
- alg,
- [alg.convert(w**2),
- alg.convert(w),
- alg.convert(1)]
- )
- def test_composite_option():
- assert construct_domain({(1,): sin(y)}, composite=False) == \
- (EX, {(1,): EX(sin(y))})
- assert construct_domain({(1,): y}, composite=False) == \
- (EX, {(1,): EX(y)})
- assert construct_domain({(1, 1): 1}, composite=False) == \
- (ZZ, {(1, 1): 1})
- assert construct_domain({(1, 0): y}, composite=False) == \
- (EX, {(1, 0): EX(y)})
- def test_precision():
- f1 = Float("1.01")
- f2 = Float("1.0000000000000000000001")
- for u in [1, 1e-2, 1e-6, 1e-13, 1e-14, 1e-16, 1e-20, 1e-100, 1e-300,
- f1, f2]:
- result = construct_domain([u])
- v = float(result[1][0])
- assert abs(u - v) / u < 1e-14 # Test relative accuracy
- result = construct_domain([f1])
- y = result[1][0]
- assert y-1 > 1e-50
- result = construct_domain([f2])
- y = result[1][0]
- assert y-1 > 1e-50
- def test_issue_11538():
- for n in [E, pi, Catalan]:
- assert construct_domain(n)[0] == ZZ[n]
- assert construct_domain(x + n)[0] == ZZ[x, n]
- assert construct_domain(GoldenRatio)[0] == EX
- assert construct_domain(x + GoldenRatio)[0] == EX
|