123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- from math import prod
- from sympy import QQ, ZZ
- from sympy.abc import x, theta
- from sympy.ntheory import factorint
- from sympy.ntheory.residue_ntheory import n_order
- from sympy.polys import Poly, cyclotomic_poly
- from sympy.polys.matrices import DomainMatrix
- from sympy.polys.numberfields.basis import round_two
- from sympy.polys.numberfields.exceptions import StructureError
- from sympy.polys.numberfields.modules import PowerBasis, to_col
- from sympy.polys.numberfields.primes import (
- prime_decomp, _two_elt_rep,
- _check_formal_conditions_for_maximal_order,
- )
- from sympy.testing.pytest import raises
- def test_check_formal_conditions_for_maximal_order():
- T = Poly(cyclotomic_poly(5, x))
- A = PowerBasis(T)
- B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
- C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
- D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1])
- # Is a direct submodule of a power basis, but lacks 1 as first generator:
- raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(B))
- # Is not a direct submodule of a power basis:
- raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(C))
- # Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF:
- raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(D))
- def test_two_elt_rep():
- ell = 7
- T = Poly(cyclotomic_poly(ell))
- ZK, dK = round_two(T)
- for p in [29, 13, 11, 5]:
- P = prime_decomp(p, T)
- for Pi in P:
- # We have Pi in two-element representation, and, because we are
- # looking at a cyclotomic field, this was computed by the "easy"
- # method that just factors T mod p. We will now convert this to
- # a set of Z-generators, then convert that back into a two-element
- # rep. The latter need not be identical to the two-elt rep we
- # already have, but it must have the same HNF.
- H = p*ZK + Pi.alpha*ZK
- gens = H.basis_element_pullbacks()
- # Note: we could supply f = Pi.f, but prefer to test behavior without it.
- b = _two_elt_rep(gens, ZK, p)
- if b != Pi.alpha:
- H2 = p*ZK + b*ZK
- assert H2 == H
- def test_valuation_at_prime_ideal():
- p = 7
- T = Poly(cyclotomic_poly(p))
- ZK, dK = round_two(T)
- P = prime_decomp(p, T, dK=dK, ZK=ZK)
- assert len(P) == 1
- P0 = P[0]
- v = P0.valuation(p*ZK)
- assert v == P0.e
- # Test easy 0 case:
- assert P0.valuation(5*ZK) == 0
- def test_decomp_1():
- # All prime decompositions in cyclotomic fields are in the "easy case,"
- # since the index is unity.
- # Here we check the ramified prime.
- T = Poly(cyclotomic_poly(7))
- raises(ValueError, lambda: prime_decomp(7))
- P = prime_decomp(7, T)
- assert len(P) == 1
- P0 = P[0]
- assert P0.e == 6
- assert P0.f == 1
- # Test powers:
- assert P0**0 == P0.ZK
- assert P0**1 == P0
- assert P0**6 == 7 * P0.ZK
- def test_decomp_2():
- # More easy cyclotomic cases, but here we check unramified primes.
- ell = 7
- T = Poly(cyclotomic_poly(ell))
- for p in [29, 13, 11, 5]:
- f_exp = n_order(p, ell)
- g_exp = (ell - 1) // f_exp
- P = prime_decomp(p, T)
- assert len(P) == g_exp
- for Pi in P:
- assert Pi.e == 1
- assert Pi.f == f_exp
- def test_decomp_3():
- T = Poly(x ** 2 - 35)
- rad = {}
- ZK, dK = round_two(T, radicals=rad)
- # 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the
- # rational primes 2, 5, 7 should be the square of a prime ideal.
- for p in [2, 5, 7]:
- P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
- assert len(P) == 1
- assert P[0].e == 2
- assert P[0]**2 == p*ZK
- def test_decomp_4():
- T = Poly(x ** 2 - 21)
- rad = {}
- ZK, dK = round_two(T, radicals=rad)
- # 21 is 1 mod 4, so field disc is 3*7, and theory says the
- # rational primes 3, 7 should be the square of a prime ideal.
- for p in [3, 7]:
- P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
- assert len(P) == 1
- assert P[0].e == 2
- assert P[0]**2 == p*ZK
- def test_decomp_5():
- # Here is our first test of the "hard case" of prime decomposition.
- # We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and
- # we consider the factorization of the rational prime 2, which divides
- # the index.
- # Theory says the form of p's factorization depends on the residue of
- # d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8.
- for d in [-7, -3]:
- T = Poly(x ** 2 - d)
- rad = {}
- ZK, dK = round_two(T, radicals=rad)
- p = 2
- P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
- if d % 8 == 1:
- assert len(P) == 2
- assert all(P[i].e == 1 and P[i].f == 1 for i in range(2))
- assert prod(Pi**Pi.e for Pi in P) == p * ZK
- else:
- assert d % 8 == 5
- assert len(P) == 1
- assert P[0].e == 1
- assert P[0].f == 2
- assert P[0].as_submodule() == p * ZK
- def test_decomp_6():
- # Another case where 2 divides the index. This is Dedekind's example of
- # an essential discriminant divisor. (See Cohen, Exercise 6.10.)
- T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
- rad = {}
- ZK, dK = round_two(T, radicals=rad)
- p = 2
- P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
- assert len(P) == 3
- assert all(Pi.e == Pi.f == 1 for Pi in P)
- assert prod(Pi**Pi.e for Pi in P) == p*ZK
- def test_decomp_7():
- # Try working through an AlgebraicField
- T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
- K = QQ.alg_field_from_poly(T)
- p = 2
- P = K.primes_above(p)
- ZK = K.maximal_order()
- assert len(P) == 3
- assert all(Pi.e == Pi.f == 1 for Pi in P)
- assert prod(Pi**Pi.e for Pi in P) == p*ZK
- def test_decomp_8():
- # This time we consider various cubics, and try factoring all primes
- # dividing the index.
- cases = (
- x ** 3 + 3 * x ** 2 - 4 * x + 4,
- x ** 3 + 3 * x ** 2 + 3 * x - 3,
- x ** 3 + 5 * x ** 2 - x + 3,
- x ** 3 + 5 * x ** 2 - 5 * x - 5,
- x ** 3 + 3 * x ** 2 + 5,
- x ** 3 + 6 * x ** 2 + 3 * x - 1,
- x ** 3 + 6 * x ** 2 + 4,
- x ** 3 + 7 * x ** 2 + 7 * x - 7,
- x ** 3 + 7 * x ** 2 - x + 5,
- x ** 3 + 7 * x ** 2 - 5 * x + 5,
- x ** 3 + 4 * x ** 2 - 3 * x + 7,
- x ** 3 + 8 * x ** 2 + 5 * x - 1,
- x ** 3 + 8 * x ** 2 - 2 * x + 6,
- x ** 3 + 6 * x ** 2 - 3 * x + 8,
- x ** 3 + 9 * x ** 2 + 6 * x - 8,
- x ** 3 + 15 * x ** 2 - 9 * x + 13,
- )
- def display(T, p, radical, P, I, J):
- """Useful for inspection, when running test manually."""
- print('=' * 20)
- print(T, p, radical)
- for Pi in P:
- print(f' ({Pi!r})')
- print("I: ", I)
- print("J: ", J)
- print(f'Equal: {I == J}')
- inspect = False
- for g in cases:
- T = Poly(g)
- rad = {}
- ZK, dK = round_two(T, radicals=rad)
- dT = T.discriminant()
- f_squared = dT // dK
- F = factorint(f_squared)
- for p in F:
- radical = rad.get(p)
- P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical)
- I = prod(Pi**Pi.e for Pi in P)
- J = p * ZK
- if inspect:
- display(T, p, radical, P, I, J)
- assert I == J
- def test_PrimeIdeal_eq():
- # `==` should fail on objects of different types, so even a completely
- # inert PrimeIdeal should test unequal to the rational prime it divides.
- T = Poly(cyclotomic_poly(7))
- P0 = prime_decomp(5, T)[0]
- assert P0.f == 6
- assert P0.as_submodule() == 5 * P0.ZK
- assert P0 != 5
- def test_PrimeIdeal_add():
- T = Poly(cyclotomic_poly(7))
- P0 = prime_decomp(7, T)[0]
- # Adding ideals computes their GCD, so adding the ramified prime dividing
- # 7 to 7 itself should reproduce this prime (as a submodule).
- assert P0 + 7 * P0.ZK == P0.as_submodule()
- def test_str():
- # Without alias:
- k = QQ.alg_field_from_poly(Poly(x**2 + 7))
- frp = k.primes_above(2)[0]
- assert str(frp) == '(2, 3*_x/2 + 1/2)'
- frp = k.primes_above(3)[0]
- assert str(frp) == '(3)'
- # With alias:
- k = QQ.alg_field_from_poly(Poly(x ** 2 + 7), alias='alpha')
- frp = k.primes_above(2)[0]
- assert str(frp) == '(2, 3*alpha/2 + 1/2)'
- frp = k.primes_above(3)[0]
- assert str(frp) == '(3)'
- def test_repr():
- T = Poly(x**2 + 7)
- ZK, dK = round_two(T)
- P = prime_decomp(2, T, dK=dK, ZK=ZK)
- assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
- assert P[0].repr(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
- assert P[0].repr(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)'
- def test_PrimeIdeal_reduce():
- k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
- Zk = k.maximal_order()
- P = k.primes_above(2)
- frp = P[2]
- # reduce_element
- a = Zk.parent(to_col([23, 20, 11]), denom=6)
- a_bar_expected = Zk.parent(to_col([11, 5, 2]), denom=6)
- a_bar = frp.reduce_element(a)
- assert a_bar == a_bar_expected
- # reduce_ANP
- a = k([QQ(11, 6), QQ(20, 6), QQ(23, 6)])
- a_bar_expected = k([QQ(2, 6), QQ(5, 6), QQ(11, 6)])
- a_bar = frp.reduce_ANP(a)
- assert a_bar == a_bar_expected
- # reduce_alg_num
- a = k.to_alg_num(a)
- a_bar_expected = k.to_alg_num(a_bar_expected)
- a_bar = frp.reduce_alg_num(a)
- assert a_bar == a_bar_expected
- def test_issue_23402():
- k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
- P = k.primes_above(3)
- assert P[0].alpha.equiv(0)
|