123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- """Tests on algebraic numbers. """
- from sympy.core.containers import Tuple
- from sympy.core.numbers import (AlgebraicNumber, I, Rational)
- from sympy.core.singleton import S
- from sympy.core.symbol import Symbol
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.polys.polytools import Poly
- from sympy.polys.numberfields.subfield import to_number_field
- from sympy.polys.polyclasses import DMP
- from sympy.polys.domains import QQ
- from sympy.polys.rootoftools import CRootOf
- from sympy.abc import x, y
- def test_AlgebraicNumber():
- minpoly, root = x**2 - 2, sqrt(2)
- a = AlgebraicNumber(root, gen=x)
- assert a.rep == DMP([QQ(1), QQ(0)], QQ)
- assert a.root == root
- assert a.alias is None
- assert a.minpoly == minpoly
- assert a.is_number
- assert a.is_aliased is False
- assert a.coeffs() == [S.One, S.Zero]
- assert a.native_coeffs() == [QQ(1), QQ(0)]
- a = AlgebraicNumber(root, gen=x, alias='y')
- assert a.rep == DMP([QQ(1), QQ(0)], QQ)
- assert a.root == root
- assert a.alias == Symbol('y')
- assert a.minpoly == minpoly
- assert a.is_number
- assert a.is_aliased is True
- a = AlgebraicNumber(root, gen=x, alias=Symbol('y'))
- assert a.rep == DMP([QQ(1), QQ(0)], QQ)
- assert a.root == root
- assert a.alias == Symbol('y')
- assert a.minpoly == minpoly
- assert a.is_number
- assert a.is_aliased is True
- assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ)
- assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ)
- assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ)
- assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ)
- assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ)
- assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ)
- assert AlgebraicNumber(
- sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ)
- assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ)
- a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2])
- assert a.rep == DMP([QQ(1), QQ(2)], QQ)
- assert a.root == root
- assert a.alias is None
- assert a.minpoly == minpoly
- assert a.is_number
- assert a.is_aliased is False
- assert a.coeffs() == [S.One, S(2)]
- assert a.native_coeffs() == [QQ(1), QQ(2)]
- a = AlgebraicNumber((minpoly, root), [1, 2])
- assert a.rep == DMP([QQ(1), QQ(2)], QQ)
- assert a.root == root
- assert a.alias is None
- assert a.minpoly == minpoly
- assert a.is_number
- assert a.is_aliased is False
- a = AlgebraicNumber((Poly(minpoly), root), [1, 2])
- assert a.rep == DMP([QQ(1), QQ(2)], QQ)
- assert a.root == root
- assert a.alias is None
- assert a.minpoly == minpoly
- assert a.is_number
- assert a.is_aliased is False
- assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)
- assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)
- a = AlgebraicNumber(sqrt(2))
- b = AlgebraicNumber(sqrt(2))
- assert a == b
- c = AlgebraicNumber(sqrt(2), gen=x)
- assert a == b
- assert a == c
- a = AlgebraicNumber(sqrt(2), [1, 2])
- b = AlgebraicNumber(sqrt(2), [1, 3])
- assert a != b and a != sqrt(2) + 3
- assert (a == x) is False and (a != x) is True
- a = AlgebraicNumber(sqrt(2), [1, 0])
- b = AlgebraicNumber(sqrt(2), [1, 0], alias=y)
- assert a.as_poly(x) == Poly(x, domain='QQ')
- assert b.as_poly() == Poly(y, domain='QQ')
- assert a.as_expr() == sqrt(2)
- assert a.as_expr(x) == x
- assert b.as_expr() == sqrt(2)
- assert b.as_expr(x) == x
- a = AlgebraicNumber(sqrt(2), [2, 3])
- b = AlgebraicNumber(sqrt(2), [2, 3], alias=y)
- p = a.as_poly()
- assert p == Poly(2*p.gen + 3)
- assert a.as_poly(x) == Poly(2*x + 3, domain='QQ')
- assert b.as_poly() == Poly(2*y + 3, domain='QQ')
- assert a.as_expr() == 2*sqrt(2) + 3
- assert a.as_expr(x) == 2*x + 3
- assert b.as_expr() == 2*sqrt(2) + 3
- assert b.as_expr(x) == 2*x + 3
- a = AlgebraicNumber(sqrt(2))
- b = to_number_field(sqrt(2))
- assert a.args == b.args == (sqrt(2), Tuple(1, 0))
- b = AlgebraicNumber(sqrt(2), alias='alpha')
- assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha'))
- a = AlgebraicNumber(sqrt(2), [1, 2, 3])
- assert a.args == (sqrt(2), Tuple(1, 2, 3))
- a = AlgebraicNumber(sqrt(2), [1, 2], "alpha")
- b = AlgebraicNumber(a)
- c = AlgebraicNumber(a, alias="gamma")
- assert a == b
- assert c.alias.name == "gamma"
- a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0])
- b = AlgebraicNumber(a, [1, 0, 0])
- assert b.root == a.root
- assert a.to_root() == sqrt(2)
- assert b.to_root() == 2
- a = AlgebraicNumber(2)
- assert a.is_primitive_element is True
- def test_to_algebraic_integer():
- a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer()
- assert a.minpoly == x**2 - 3
- assert a.root == sqrt(3)
- assert a.rep == DMP([QQ(1), QQ(0)], QQ)
- a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer()
- assert a.minpoly == x**2 - 12
- assert a.root == 2*sqrt(3)
- assert a.rep == DMP([QQ(1), QQ(0)], QQ)
- a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer()
- assert a.minpoly == x**2 - 12
- assert a.root == 2*sqrt(3)
- assert a.rep == DMP([QQ(1), QQ(0)], QQ)
- a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer()
- assert a.minpoly == x**2 - 12
- assert a.root == 2*sqrt(3)
- assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ)
- def test_AlgebraicNumber_to_root():
- assert AlgebraicNumber(sqrt(2)).to_root() == sqrt(2)
- zeta5_squared = AlgebraicNumber(CRootOf(x**5 - 1, 4), coeffs=[1, 0, 0])
- assert zeta5_squared.to_root() == CRootOf(x**4 + x**3 + x**2 + x + 1, 1)
- zeta3_squared = AlgebraicNumber(CRootOf(x**3 - 1, 2), coeffs=[1, 0, 0])
- assert zeta3_squared.to_root() == -S(1)/2 - sqrt(3)*I/2
- assert zeta3_squared.to_root(radicals=False) == CRootOf(x**2 + x + 1, 0)
|