123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- #
- # test_linsolve.py
- #
- # Test the internal implementation of linsolve.
- #
- from sympy.testing.pytest import raises
- from sympy.core.numbers import I
- from sympy.core.relational import Eq
- from sympy.core.singleton import S
- from sympy.abc import x, y, z
- from sympy.polys.matrices.linsolve import _linsolve
- from sympy.polys.solvers import PolyNonlinearError
- def test__linsolve():
- assert _linsolve([], [x]) == {x:x}
- assert _linsolve([S.Zero], [x]) == {x:x}
- assert _linsolve([x-1,x-2], [x]) is None
- assert _linsolve([x-1], [x]) == {x:1}
- assert _linsolve([x-1, y], [x, y]) == {x:1, y:S.Zero}
- assert _linsolve([2*I], [x]) is None
- raises(PolyNonlinearError, lambda: _linsolve([x*(1 + x)], [x]))
- def test__linsolve_float():
- # This should give the exact answer:
- eqs = [
- y - x,
- y - 0.0216 * x
- ]
- sol = {x:0.0, y:0.0}
- assert _linsolve(eqs, (x, y)) == sol
- # Other cases should be close to eps
- def all_close(sol1, sol2, eps=1e-15):
- close = lambda a, b: abs(a - b) < eps
- assert sol1.keys() == sol2.keys()
- return all(close(sol1[s], sol2[s]) for s in sol1)
- eqs = [
- 0.8*x + 0.8*z + 0.2,
- 0.9*x + 0.7*y + 0.2*z + 0.9,
- 0.7*x + 0.2*y + 0.2*z + 0.5
- ]
- sol_exact = {x:-29/42, y:-11/21, z:37/84}
- sol_linsolve = _linsolve(eqs, [x,y,z])
- assert all_close(sol_exact, sol_linsolve)
- eqs = [
- 0.9*x + 0.3*y + 0.4*z + 0.6,
- 0.6*x + 0.9*y + 0.1*z + 0.7,
- 0.4*x + 0.6*y + 0.9*z + 0.5
- ]
- sol_exact = {x:-88/175, y:-46/105, z:-1/25}
- sol_linsolve = _linsolve(eqs, [x,y,z])
- assert all_close(sol_exact, sol_linsolve)
- eqs = [
- 0.4*x + 0.3*y + 0.6*z + 0.7,
- 0.4*x + 0.3*y + 0.9*z + 0.9,
- 0.7*x + 0.9*y,
- ]
- sol_exact = {x:-9/5, y:7/5, z:-2/3}
- sol_linsolve = _linsolve(eqs, [x,y,z])
- assert all_close(sol_exact, sol_linsolve)
- eqs = [
- x*(0.7 + 0.6*I) + y*(0.4 + 0.7*I) + z*(0.9 + 0.1*I) + 0.5,
- 0.2*I*x + 0.2*I*y + z*(0.9 + 0.2*I) + 0.1,
- x*(0.9 + 0.7*I) + y*(0.9 + 0.7*I) + z*(0.9 + 0.4*I) + 0.4,
- ]
- sol_exact = {
- x:-6157/7995 - 411/5330*I,
- y:8519/15990 + 1784/7995*I,
- z:-34/533 + 107/1599*I,
- }
- sol_linsolve = _linsolve(eqs, [x,y,z])
- assert all_close(sol_exact, sol_linsolve)
- # XXX: This system for x and y over RR(z) is problematic.
- #
- # eqs = [
- # x*(0.2*z + 0.9) + y*(0.5*z + 0.8) + 0.6,
- # 0.1*x*z + y*(0.1*z + 0.6) + 0.9,
- # ]
- #
- # linsolve(eqs, [x, y])
- # The solution for x comes out as
- #
- # -3.9e-5*z**2 - 3.6e-5*z - 8.67361737988404e-20
- # x = ----------------------------------------------
- # 3.0e-6*z**3 - 1.3e-5*z**2 - 5.4e-5*z
- #
- # The 8e-20 in the numerator should be zero which would allow z to cancel
- # from top and bottom. It should be possible to avoid this somehow because
- # the inverse of the matrix only has a quadratic factor (the determinant)
- # in the denominator.
- def test__linsolve_deprecated():
- raises(PolyNonlinearError, lambda:
- _linsolve([Eq(x**2, x**2 + y)], [x, y]))
- raises(PolyNonlinearError, lambda:
- _linsolve([(x + y)**2 - x**2], [x]))
- raises(PolyNonlinearError, lambda:
- _linsolve([Eq((x + y)**2, x**2)], [x]))
|