123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910 |
- from sympy.testing.pytest import raises
- from sympy.core.numbers import Integer, Rational
- from sympy.core.singleton import S
- from sympy.functions import sqrt
- from sympy.matrices.dense import Matrix
- from sympy.polys.domains import FF, ZZ, QQ, EXRAW
- from sympy.polys.matrices.domainmatrix import DomainMatrix, DomainScalar, DM
- from sympy.polys.matrices.exceptions import (
- DMBadInputError, DMDomainError, DMShapeError, DMFormatError, DMNotAField,
- DMNonSquareMatrixError, DMNonInvertibleMatrixError,
- )
- from sympy.polys.matrices.ddm import DDM
- from sympy.polys.matrices.sdm import SDM
- def test_DM():
- ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A = DM([[1, 2], [3, 4]], ZZ)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- def test_DomainMatrix_init():
- lol = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
- dod = {0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}}
- ddm = DDM(lol, (2, 2), ZZ)
- sdm = SDM(dod, (2, 2), ZZ)
- A = DomainMatrix(lol, (2, 2), ZZ)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- A = DomainMatrix(dod, (2, 2), ZZ)
- assert A.rep == sdm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- raises(TypeError, lambda: DomainMatrix(ddm, (2, 2), ZZ))
- raises(TypeError, lambda: DomainMatrix(sdm, (2, 2), ZZ))
- raises(TypeError, lambda: DomainMatrix(Matrix([[1]]), (1, 1), ZZ))
- for fmt, rep in [('sparse', sdm), ('dense', ddm)]:
- A = DomainMatrix(lol, (2, 2), ZZ, fmt=fmt)
- assert A.rep == rep
- A = DomainMatrix(dod, (2, 2), ZZ, fmt=fmt)
- assert A.rep == rep
- raises(ValueError, lambda: DomainMatrix(lol, (2, 2), ZZ, fmt='invalid'))
- raises(DMBadInputError, lambda: DomainMatrix([[ZZ(1), ZZ(2)]], (2, 2), ZZ))
- def test_DomainMatrix_from_rep():
- ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A = DomainMatrix.from_rep(ddm)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- sdm = SDM({0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
- A = DomainMatrix.from_rep(sdm)
- assert A.rep == sdm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
- raises(TypeError, lambda: DomainMatrix.from_rep(A))
- def test_DomainMatrix_from_list():
- ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A = DomainMatrix.from_list([[1, 2], [3, 4]], ZZ)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- dom = FF(7)
- ddm = DDM([[dom(1), dom(2)], [dom(3), dom(4)]], (2, 2), dom)
- A = DomainMatrix.from_list([[1, 2], [3, 4]], dom)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == dom
- ddm = DDM([[QQ(1, 2), QQ(3, 1)], [QQ(1, 4), QQ(5, 1)]], (2, 2), QQ)
- A = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == QQ
- def test_DomainMatrix_from_list_sympy():
- ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A = DomainMatrix.from_list_sympy(2, 2, [[1, 2], [3, 4]])
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- K = QQ.algebraic_field(sqrt(2))
- ddm = DDM(
- [[K.convert(1 + sqrt(2)), K.convert(2 + sqrt(2))],
- [K.convert(3 + sqrt(2)), K.convert(4 + sqrt(2))]],
- (2, 2),
- K
- )
- A = DomainMatrix.from_list_sympy(
- 2, 2, [[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]],
- extension=True)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == K
- def test_DomainMatrix_from_dict_sympy():
- sdm = SDM({0: {0: QQ(1, 2)}, 1: {1: QQ(2, 3)}}, (2, 2), QQ)
- sympy_dict = {0: {0: Rational(1, 2)}, 1: {1: Rational(2, 3)}}
- A = DomainMatrix.from_dict_sympy(2, 2, sympy_dict)
- assert A.rep == sdm
- assert A.shape == (2, 2)
- assert A.domain == QQ
- fds = DomainMatrix.from_dict_sympy
- raises(DMBadInputError, lambda: fds(2, 2, {3: {0: Rational(1, 2)}}))
- raises(DMBadInputError, lambda: fds(2, 2, {0: {3: Rational(1, 2)}}))
- def test_DomainMatrix_from_Matrix():
- sdm = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
- A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]]))
- assert A.rep == sdm
- assert A.shape == (2, 2)
- assert A.domain == ZZ
- K = QQ.algebraic_field(sqrt(2))
- sdm = SDM(
- {0: {0: K.convert(1 + sqrt(2)), 1: K.convert(2 + sqrt(2))},
- 1: {0: K.convert(3 + sqrt(2)), 1: K.convert(4 + sqrt(2))}},
- (2, 2),
- K
- )
- A = DomainMatrix.from_Matrix(
- Matrix([[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]]),
- extension=True)
- assert A.rep == sdm
- assert A.shape == (2, 2)
- assert A.domain == K
- A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
- ddm = DDM([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]], (2, 2), QQ)
- assert A.rep == ddm
- assert A.shape == (2, 2)
- assert A.domain == QQ
- def test_DomainMatrix_eq():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A == A
- B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(1)]], (2, 2), ZZ)
- assert A != B
- C = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
- assert A != C
- def test_DomainMatrix_unify_eq():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B1 = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- B2 = DomainMatrix([[QQ(1), QQ(3)], [QQ(3), QQ(4)]], (2, 2), QQ)
- B3 = DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
- assert A.unify_eq(B1) is True
- assert A.unify_eq(B2) is False
- assert A.unify_eq(B3) is False
- def test_DomainMatrix_get_domain():
- K, items = DomainMatrix.get_domain([1, 2, 3, 4])
- assert items == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
- assert K == ZZ
- K, items = DomainMatrix.get_domain([1, 2, 3, Rational(1, 2)])
- assert items == [QQ(1), QQ(2), QQ(3), QQ(1, 2)]
- assert K == QQ
- def test_DomainMatrix_convert_to():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aq = A.convert_to(QQ)
- assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Acopy = A.convert_to(None)
- assert Acopy == A and Acopy is not A
- def test_DomainMatrix_to_sympy():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.to_sympy() == A.convert_to(EXRAW)
- def test_DomainMatrix_to_field():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aq = A.to_field()
- assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- def test_DomainMatrix_to_sparse():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A_sparse = A.to_sparse()
- assert A_sparse.rep == {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}
- def test_DomainMatrix_to_dense():
- A = DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
- A_dense = A.to_dense()
- assert A_dense.rep == DDM([[1, 2], [3, 4]], (2, 2), ZZ)
- def test_DomainMatrix_unify():
- Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- assert Az.unify(Az) == (Az, Az)
- assert Az.unify(Aq) == (Aq, Aq)
- assert Aq.unify(Az) == (Aq, Aq)
- assert Aq.unify(Aq) == (Aq, Aq)
- As = DomainMatrix({0: {1: ZZ(1)}, 1:{0:ZZ(2)}}, (2, 2), ZZ)
- Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert As.unify(As) == (As, As)
- assert Ad.unify(Ad) == (Ad, Ad)
- Bs, Bd = As.unify(Ad, fmt='dense')
- assert Bs.rep == DDM([[0, 1], [2, 0]], (2, 2), ZZ)
- assert Bd.rep == DDM([[1, 2],[3, 4]], (2, 2), ZZ)
- Bs, Bd = As.unify(Ad, fmt='sparse')
- assert Bs.rep == SDM({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
- assert Bd.rep == SDM({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
- raises(ValueError, lambda: As.unify(Ad, fmt='invalid'))
- def test_DomainMatrix_to_Matrix():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.to_Matrix() == Matrix([[1, 2], [3, 4]])
- def test_DomainMatrix_to_list():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.to_list() == [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
- def test_DomainMatrix_to_list_flat():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.to_list_flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
- def test_DomainMatrix_to_dok():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.to_dok() == {(0, 0):ZZ(1), (0, 1):ZZ(2), (1, 0):ZZ(3), (1, 1):ZZ(4)}
- def test_DomainMatrix_repr():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert repr(A) == 'DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)'
- def test_DomainMatrix_transpose():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- AT = DomainMatrix([[ZZ(1), ZZ(3)], [ZZ(2), ZZ(4)]], (2, 2), ZZ)
- assert A.transpose() == AT
- def test_DomainMatrix_flat():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
- def test_DomainMatrix_is_zero_matrix():
- A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
- B = DomainMatrix([[ZZ(0)]], (1, 1), ZZ)
- assert A.is_zero_matrix is False
- assert B.is_zero_matrix is True
- def test_DomainMatrix_is_upper():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(0), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.is_upper is True
- assert B.is_upper is False
- def test_DomainMatrix_is_lower():
- A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.is_lower is True
- assert B.is_lower is False
- def test_DomainMatrix_is_square():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)]], (3, 2), ZZ)
- assert A.is_square is True
- assert B.is_square is False
- def test_DomainMatrix_rank():
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(6), QQ(8)]], (3, 2), QQ)
- assert A.rank() == 2
- def test_DomainMatrix_add():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
- assert A + A == A.add(A) == B
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- L = [[2, 3], [3, 4]]
- raises(TypeError, lambda: A + L)
- raises(TypeError, lambda: L + A)
- A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
- raises(DMShapeError, lambda: A1 + A2)
- raises(DMShapeError, lambda: A2 + A1)
- raises(DMShapeError, lambda: A1.add(A2))
- raises(DMShapeError, lambda: A2.add(A1))
- Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Asum = DomainMatrix([[QQ(2), QQ(4)], [QQ(6), QQ(8)]], (2, 2), QQ)
- assert Az + Aq == Asum
- assert Aq + Az == Asum
- raises(DMDomainError, lambda: Az.add(Aq))
- raises(DMDomainError, lambda: Aq.add(Az))
- As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
- Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Asd = As + Ad
- Ads = Ad + As
- assert Asd == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ)
- assert Asd.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ)
- assert Ads == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ)
- assert Ads.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ)
- raises(DMFormatError, lambda: As.add(Ad))
- def test_DomainMatrix_sub():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
- assert A - A == A.sub(A) == B
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- L = [[2, 3], [3, 4]]
- raises(TypeError, lambda: A - L)
- raises(TypeError, lambda: L - A)
- A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
- raises(DMShapeError, lambda: A1 - A2)
- raises(DMShapeError, lambda: A2 - A1)
- raises(DMShapeError, lambda: A1.sub(A2))
- raises(DMShapeError, lambda: A2.sub(A1))
- Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Adiff = DomainMatrix([[QQ(0), QQ(0)], [QQ(0), QQ(0)]], (2, 2), QQ)
- assert Az - Aq == Adiff
- assert Aq - Az == Adiff
- raises(DMDomainError, lambda: Az.sub(Aq))
- raises(DMDomainError, lambda: Aq.sub(Az))
- As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
- Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Asd = As - Ad
- Ads = Ad - As
- assert Asd == DomainMatrix([[-1, -1], [-1, -4]], (2, 2), ZZ)
- assert Asd.rep == DDM([[-1, -1], [-1, -4]], (2, 2), ZZ)
- assert Asd == -Ads
- assert Asd.rep == -Ads.rep
- def test_DomainMatrix_neg():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aneg = DomainMatrix([[ZZ(-1), ZZ(-2)], [ZZ(-3), ZZ(-4)]], (2, 2), ZZ)
- assert -A == A.neg() == Aneg
- def test_DomainMatrix_mul():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ)
- assert A*A == A.matmul(A) == A2
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- L = [[1, 2], [3, 4]]
- raises(TypeError, lambda: A * L)
- raises(TypeError, lambda: L * A)
- Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Aprod = DomainMatrix([[QQ(7), QQ(10)], [QQ(15), QQ(22)]], (2, 2), QQ)
- assert Az * Aq == Aprod
- assert Aq * Az == Aprod
- raises(DMDomainError, lambda: Az.matmul(Aq))
- raises(DMDomainError, lambda: Aq.matmul(Az))
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- AA = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
- x = ZZ(2)
- assert A * x == x * A == A.mul(x) == AA
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- AA = DomainMatrix.zeros((2, 2), ZZ)
- x = ZZ(0)
- assert A * x == x * A == A.mul(x).to_sparse() == AA
- As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
- Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- Asd = As * Ad
- Ads = Ad * As
- assert Asd == DomainMatrix([[3, 4], [2, 4]], (2, 2), ZZ)
- assert Asd.rep == DDM([[3, 4], [2, 4]], (2, 2), ZZ)
- assert Ads == DomainMatrix([[4, 1], [8, 3]], (2, 2), ZZ)
- assert Ads.rep == DDM([[4, 1], [8, 3]], (2, 2), ZZ)
- def test_DomainMatrix_mul_elementwise():
- A = DomainMatrix([[ZZ(2), ZZ(2)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(4), ZZ(0)], [ZZ(3), ZZ(0)]], (2, 2), ZZ)
- C = DomainMatrix([[ZZ(8), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
- assert A.mul_elementwise(B) == C
- assert B.mul_elementwise(A) == C
- def test_DomainMatrix_pow():
- eye = DomainMatrix.eye(2, ZZ)
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ)
- A3 = DomainMatrix([[ZZ(37), ZZ(54)], [ZZ(81), ZZ(118)]], (2, 2), ZZ)
- assert A**0 == A.pow(0) == eye
- assert A**1 == A.pow(1) == A
- assert A**2 == A.pow(2) == A2
- assert A**3 == A.pow(3) == A3
- raises(TypeError, lambda: A ** Rational(1, 2))
- raises(NotImplementedError, lambda: A ** -1)
- raises(NotImplementedError, lambda: A.pow(-1))
- A = DomainMatrix.zeros((2, 1), ZZ)
- raises(DMNonSquareMatrixError, lambda: A ** 1)
- def test_DomainMatrix_scc():
- Ad = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)],
- [ZZ(0), ZZ(1), ZZ(0)],
- [ZZ(2), ZZ(0), ZZ(4)]], (3, 3), ZZ)
- As = Ad.to_sparse()
- Addm = Ad.rep
- Asdm = As.rep
- for A in [Ad, As, Addm, Asdm]:
- assert Ad.scc() == [[1], [0, 2]]
- def test_DomainMatrix_rref():
- A = DomainMatrix([], (0, 1), QQ)
- assert A.rref() == (A, ())
- A = DomainMatrix([[QQ(1)]], (1, 1), QQ)
- assert A.rref() == (A, (0,))
- A = DomainMatrix([[QQ(0)]], (1, 1), QQ)
- assert A.rref() == (A, ())
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Ar, pivots = A.rref()
- assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
- assert pivots == (0, 1)
- A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Ar, pivots = A.rref()
- assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
- assert pivots == (0, 1)
- A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ)
- Ar, pivots = A.rref()
- assert Ar == DomainMatrix([[QQ(0), QQ(1)], [QQ(0), QQ(0)]], (2, 2), QQ)
- assert pivots == (1,)
- Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- raises(DMNotAField, lambda: Az.rref())
- def test_DomainMatrix_columnspace():
- A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ)
- Acol = DomainMatrix([[QQ(1), QQ(1)], [QQ(2), QQ(3)]], (2, 2), QQ)
- assert A.columnspace() == Acol
- Az = DomainMatrix([[ZZ(1), ZZ(-1), ZZ(1)], [ZZ(2), ZZ(-2), ZZ(3)]], (2, 3), ZZ)
- raises(DMNotAField, lambda: Az.columnspace())
- A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ, fmt='sparse')
- Acol = DomainMatrix({0: {0: QQ(1), 1: QQ(1)}, 1: {0: QQ(2), 1: QQ(3)}}, (2, 2), QQ)
- assert A.columnspace() == Acol
- def test_DomainMatrix_rowspace():
- A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ)
- assert A.rowspace() == A
- Az = DomainMatrix([[ZZ(1), ZZ(-1), ZZ(1)], [ZZ(2), ZZ(-2), ZZ(3)]], (2, 3), ZZ)
- raises(DMNotAField, lambda: Az.rowspace())
- A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ, fmt='sparse')
- assert A.rowspace() == A
- def test_DomainMatrix_nullspace():
- A = DomainMatrix([[QQ(1), QQ(1)], [QQ(1), QQ(1)]], (2, 2), QQ)
- Anull = DomainMatrix([[QQ(-1), QQ(1)]], (1, 2), QQ)
- assert A.nullspace() == Anull
- Az = DomainMatrix([[ZZ(1), ZZ(1)], [ZZ(1), ZZ(1)]], (2, 2), ZZ)
- raises(DMNotAField, lambda: Az.nullspace())
- def test_DomainMatrix_solve():
- # XXX: Maybe the _solve method should be changed...
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
- b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
- particular = DomainMatrix([[1, 0]], (1, 2), QQ)
- nullspace = DomainMatrix([[-2, 1]], (1, 2), QQ)
- assert A._solve(b) == (particular, nullspace)
- b3 = DomainMatrix([[QQ(1)], [QQ(1)], [QQ(1)]], (3, 1), QQ)
- raises(DMShapeError, lambda: A._solve(b3))
- bz = DomainMatrix([[ZZ(1)], [ZZ(1)]], (2, 1), ZZ)
- raises(DMNotAField, lambda: A._solve(bz))
- def test_DomainMatrix_inv():
- A = DomainMatrix([], (0, 0), QQ)
- assert A.inv() == A
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- Ainv = DomainMatrix([[QQ(-2), QQ(1)], [QQ(3, 2), QQ(-1, 2)]], (2, 2), QQ)
- assert A.inv() == Ainv
- Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- raises(DMNotAField, lambda: Az.inv())
- Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
- raises(DMNonSquareMatrixError, lambda: Ans.inv())
- Aninv = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(6)]], (2, 2), QQ)
- raises(DMNonInvertibleMatrixError, lambda: Aninv.inv())
- def test_DomainMatrix_det():
- A = DomainMatrix([], (0, 0), ZZ)
- assert A.det() == 1
- A = DomainMatrix([[1]], (1, 1), ZZ)
- assert A.det() == 1
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.det() == ZZ(-2)
- A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]], (3, 3), ZZ)
- assert A.det() == ZZ(-1)
- A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ)
- assert A.det() == ZZ(0)
- Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
- raises(DMNonSquareMatrixError, lambda: Ans.det())
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- assert A.det() == QQ(-2)
- def test_DomainMatrix_lu():
- A = DomainMatrix([], (0, 0), QQ)
- assert A.lu() == (A, A, [])
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- L = DomainMatrix([[QQ(1), QQ(0)], [QQ(3), QQ(1)]], (2, 2), QQ)
- U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)]], (2, 2), QQ)
- swaps = []
- assert A.lu() == (L, U, swaps)
- A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
- U = DomainMatrix([[QQ(3), QQ(4)], [QQ(0), QQ(2)]], (2, 2), QQ)
- swaps = [(0, 1)]
- assert A.lu() == (L, U, swaps)
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
- L = DomainMatrix([[QQ(1), QQ(0)], [QQ(2), QQ(1)]], (2, 2), QQ)
- U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(0)]], (2, 2), QQ)
- swaps = []
- assert A.lu() == (L, U, swaps)
- A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ)
- L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
- U = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ)
- swaps = []
- assert A.lu() == (L, U, swaps)
- A = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
- L = DomainMatrix([[QQ(1), QQ(0)], [QQ(4), QQ(1)]], (2, 2), QQ)
- U = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(0), QQ(-3), QQ(-6)]], (2, 3), QQ)
- swaps = []
- assert A.lu() == (L, U, swaps)
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
- L = DomainMatrix([
- [QQ(1), QQ(0), QQ(0)],
- [QQ(3), QQ(1), QQ(0)],
- [QQ(5), QQ(2), QQ(1)]], (3, 3), QQ)
- U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]], (3, 2), QQ)
- swaps = []
- assert A.lu() == (L, U, swaps)
- A = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]
- L = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]]
- U = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]]
- to_dom = lambda rows, dom: [[dom(e) for e in row] for row in rows]
- A = DomainMatrix(to_dom(A, QQ), (4, 4), QQ)
- L = DomainMatrix(to_dom(L, QQ), (4, 4), QQ)
- U = DomainMatrix(to_dom(U, QQ), (4, 4), QQ)
- assert A.lu() == (L, U, [])
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- raises(DMNotAField, lambda: A.lu())
- def test_DomainMatrix_lu_solve():
- # Base case
- A = b = x = DomainMatrix([], (0, 0), QQ)
- assert A.lu_solve(b) == x
- # Basic example
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
- x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
- assert A.lu_solve(b) == x
- # Example with swaps
- A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
- x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
- assert A.lu_solve(b) == x
- # Non-invertible
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
- b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
- raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b))
- # Overdetermined, consistent
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
- b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ)
- x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
- assert A.lu_solve(b) == x
- # Overdetermined, inconsistent
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
- b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ)
- raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b))
- # Underdetermined
- A = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
- b = DomainMatrix([[QQ(1)]], (1, 1), QQ)
- raises(NotImplementedError, lambda: A.lu_solve(b))
- # Non-field
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- b = DomainMatrix([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
- raises(DMNotAField, lambda: A.lu_solve(b))
- # Shape mismatch
- A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
- b = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
- raises(DMShapeError, lambda: A.lu_solve(b))
- def test_DomainMatrix_charpoly():
- A = DomainMatrix([], (0, 0), ZZ)
- assert A.charpoly() == [ZZ(1)]
- A = DomainMatrix([[1]], (1, 1), ZZ)
- assert A.charpoly() == [ZZ(1), ZZ(-1)]
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)]
- A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
- assert A.charpoly() == [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)]
- Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
- raises(DMNonSquareMatrixError, lambda: Ans.charpoly())
- def test_DomainMatrix_eye():
- A = DomainMatrix.eye(3, QQ)
- assert A.rep == SDM.eye((3, 3), QQ)
- assert A.shape == (3, 3)
- assert A.domain == QQ
- def test_DomainMatrix_zeros():
- A = DomainMatrix.zeros((1, 2), QQ)
- assert A.rep == SDM.zeros((1, 2), QQ)
- assert A.shape == (1, 2)
- assert A.domain == QQ
- def test_DomainMatrix_ones():
- A = DomainMatrix.ones((2, 3), QQ)
- assert A.rep == DDM.ones((2, 3), QQ)
- assert A.shape == (2, 3)
- assert A.domain == QQ
- def test_DomainMatrix_diag():
- A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (2, 2), ZZ)
- assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ) == A
- A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (3, 4), ZZ)
- assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ, (3, 4)) == A
- def test_DomainMatrix_hstack():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
- C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
- AB = DomainMatrix([
- [ZZ(1), ZZ(2), ZZ(5), ZZ(6)],
- [ZZ(3), ZZ(4), ZZ(7), ZZ(8)]], (2, 4), ZZ)
- ABC = DomainMatrix([
- [ZZ(1), ZZ(2), ZZ(5), ZZ(6), ZZ(9), ZZ(10)],
- [ZZ(3), ZZ(4), ZZ(7), ZZ(8), ZZ(11), ZZ(12)]], (2, 6), ZZ)
- assert A.hstack(B) == AB
- assert A.hstack(B, C) == ABC
- def test_DomainMatrix_vstack():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
- C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
- AB = DomainMatrix([
- [ZZ(1), ZZ(2)],
- [ZZ(3), ZZ(4)],
- [ZZ(5), ZZ(6)],
- [ZZ(7), ZZ(8)]], (4, 2), ZZ)
- ABC = DomainMatrix([
- [ZZ(1), ZZ(2)],
- [ZZ(3), ZZ(4)],
- [ZZ(5), ZZ(6)],
- [ZZ(7), ZZ(8)],
- [ZZ(9), ZZ(10)],
- [ZZ(11), ZZ(12)]], (6, 2), ZZ)
- assert A.vstack(B) == AB
- assert A.vstack(B, C) == ABC
- def test_DomainMatrix_applyfunc():
- A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
- B = DomainMatrix([[ZZ(2), ZZ(4)]], (1, 2), ZZ)
- assert A.applyfunc(lambda x: 2*x) == B
- def test_DomainMatrix_scalarmul():
- A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- lamda = DomainScalar(QQ(3)/QQ(2), QQ)
- assert A * lamda == DomainMatrix([[QQ(3, 2), QQ(3)], [QQ(9, 2), QQ(6)]], (2, 2), QQ)
- assert A * 2 == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
- assert 2 * A == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
- assert A * DomainScalar(ZZ(0), ZZ) == DomainMatrix({}, (2, 2), ZZ)
- assert A * DomainScalar(ZZ(1), ZZ) == A
- raises(TypeError, lambda: A * 1.5)
- def test_DomainMatrix_truediv():
- A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]]))
- lamda = DomainScalar(QQ(3)/QQ(2), QQ)
- assert A / lamda == DomainMatrix({0: {0: QQ(2, 3), 1: QQ(4, 3)}, 1: {0: QQ(2), 1: QQ(8, 3)}}, (2, 2), QQ)
- b = DomainScalar(ZZ(1), ZZ)
- assert A / b == DomainMatrix({0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}, (2, 2), QQ)
- assert A / 1 == DomainMatrix({0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}, (2, 2), QQ)
- assert A / 2 == DomainMatrix({0: {0: QQ(1, 2), 1: QQ(1)}, 1: {0: QQ(3, 2), 1: QQ(2)}}, (2, 2), QQ)
- raises(ZeroDivisionError, lambda: A / 0)
- raises(TypeError, lambda: A / 1.5)
- raises(ZeroDivisionError, lambda: A / DomainScalar(ZZ(0), ZZ))
- def test_DomainMatrix_getitem():
- dM = DomainMatrix([
- [ZZ(1), ZZ(2), ZZ(3)],
- [ZZ(4), ZZ(5), ZZ(6)],
- [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
- assert dM[1:,:-2] == DomainMatrix([[ZZ(4)], [ZZ(7)]], (2, 1), ZZ)
- assert dM[2,:-2] == DomainMatrix([[ZZ(7)]], (1, 1), ZZ)
- assert dM[:-2,:-2] == DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
- assert dM[:-1,0:2] == DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(4), ZZ(5)]], (2, 2), ZZ)
- assert dM[:, -1] == DomainMatrix([[ZZ(3)], [ZZ(6)], [ZZ(9)]], (3, 1), ZZ)
- assert dM[-1, :] == DomainMatrix([[ZZ(7), ZZ(8), ZZ(9)]], (1, 3), ZZ)
- assert dM[::-1, :] == DomainMatrix([
- [ZZ(7), ZZ(8), ZZ(9)],
- [ZZ(4), ZZ(5), ZZ(6)],
- [ZZ(1), ZZ(2), ZZ(3)]], (3, 3), ZZ)
- raises(IndexError, lambda: dM[4, :-2])
- raises(IndexError, lambda: dM[:-2, 4])
- assert dM[1, 2] == DomainScalar(ZZ(6), ZZ)
- assert dM[-2, 2] == DomainScalar(ZZ(6), ZZ)
- assert dM[1, -2] == DomainScalar(ZZ(5), ZZ)
- assert dM[-1, -3] == DomainScalar(ZZ(7), ZZ)
- raises(IndexError, lambda: dM[3, 3])
- raises(IndexError, lambda: dM[1, 4])
- raises(IndexError, lambda: dM[-1, -4])
- dM = DomainMatrix({0: {0: ZZ(1)}}, (10, 10), ZZ)
- assert dM[5, 5] == DomainScalar(ZZ(0), ZZ)
- assert dM[0, 0] == DomainScalar(ZZ(1), ZZ)
- dM = DomainMatrix({1: {0: 1}}, (2,1), ZZ)
- assert dM[0:, 0] == DomainMatrix({1: {0: 1}}, (2, 1), ZZ)
- raises(IndexError, lambda: dM[3, 0])
- dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
- assert dM[:2,:2] == DomainMatrix({}, (2, 2), ZZ)
- assert dM[2:,2:] == DomainMatrix({0: {0: 1}, 2: {2: 1}}, (3, 3), ZZ)
- assert dM[3:,3:] == DomainMatrix({1: {1: 1}}, (2, 2), ZZ)
- assert dM[2:, 6:] == DomainMatrix({}, (3, 0), ZZ)
- def test_DomainMatrix_getitem_sympy():
- dM = DomainMatrix({2: {2: ZZ(2)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
- val1 = dM.getitem_sympy(0, 0)
- assert val1 is S.Zero
- val2 = dM.getitem_sympy(2, 2)
- assert val2 == 2 and isinstance(val2, Integer)
- def test_DomainMatrix_extract():
- dM1 = DomainMatrix([
- [ZZ(1), ZZ(2), ZZ(3)],
- [ZZ(4), ZZ(5), ZZ(6)],
- [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
- dM2 = DomainMatrix([
- [ZZ(1), ZZ(3)],
- [ZZ(7), ZZ(9)]], (2, 2), ZZ)
- assert dM1.extract([0, 2], [0, 2]) == dM2
- assert dM1.to_sparse().extract([0, 2], [0, 2]) == dM2.to_sparse()
- assert dM1.extract([0, -1], [0, -1]) == dM2
- assert dM1.to_sparse().extract([0, -1], [0, -1]) == dM2.to_sparse()
- dM3 = DomainMatrix([
- [ZZ(1), ZZ(2), ZZ(2)],
- [ZZ(4), ZZ(5), ZZ(5)],
- [ZZ(4), ZZ(5), ZZ(5)]], (3, 3), ZZ)
- assert dM1.extract([0, 1, 1], [0, 1, 1]) == dM3
- assert dM1.to_sparse().extract([0, 1, 1], [0, 1, 1]) == dM3.to_sparse()
- empty = [
- ([], [], (0, 0)),
- ([1], [], (1, 0)),
- ([], [1], (0, 1)),
- ]
- for rows, cols, size in empty:
- assert dM1.extract(rows, cols) == DomainMatrix.zeros(size, ZZ).to_dense()
- assert dM1.to_sparse().extract(rows, cols) == DomainMatrix.zeros(size, ZZ)
- dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- bad_indices = [([2], [0]), ([0], [2]), ([-3], [0]), ([0], [-3])]
- for rows, cols in bad_indices:
- raises(IndexError, lambda: dM.extract(rows, cols))
- raises(IndexError, lambda: dM.to_sparse().extract(rows, cols))
- def test_DomainMatrix_setitem():
- dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
- dM[2, 2] = ZZ(2)
- assert dM == DomainMatrix({2: {2: ZZ(2)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
- def setitem(i, j, val):
- dM[i, j] = val
- raises(TypeError, lambda: setitem(2, 2, QQ(1, 2)))
- raises(NotImplementedError, lambda: setitem(slice(1, 2), 2, ZZ(1)))
- def test_DomainMatrix_pickling():
- import pickle
- dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
- assert pickle.loads(pickle.dumps(dM)) == dM
- dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
- assert pickle.loads(pickle.dumps(dM)) == dM
|