old_fractionfield.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. """Implementation of :class:`FractionField` class. """
  2. from sympy.polys.domains.field import Field
  3. from sympy.polys.domains.compositedomain import CompositeDomain
  4. from sympy.polys.domains.characteristiczero import CharacteristicZero
  5. from sympy.polys.polyclasses import DMF
  6. from sympy.polys.polyerrors import GeneratorsNeeded
  7. from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
  8. from sympy.utilities import public
  9. @public
  10. class FractionField(Field, CharacteristicZero, CompositeDomain):
  11. """A class for representing rational function fields. """
  12. dtype = DMF
  13. is_FractionField = is_Frac = True
  14. has_assoc_Ring = True
  15. has_assoc_Field = True
  16. def __init__(self, dom, *gens):
  17. if not gens:
  18. raise GeneratorsNeeded("generators not specified")
  19. lev = len(gens) - 1
  20. self.ngens = len(gens)
  21. self.zero = self.dtype.zero(lev, dom, ring=self)
  22. self.one = self.dtype.one(lev, dom, ring=self)
  23. self.domain = self.dom = dom
  24. self.symbols = self.gens = gens
  25. def new(self, element):
  26. return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
  27. def __str__(self):
  28. return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')'
  29. def __hash__(self):
  30. return hash((self.__class__.__name__, self.dtype, self.dom, self.gens))
  31. def __eq__(self, other):
  32. """Returns ``True`` if two domains are equivalent. """
  33. return isinstance(other, FractionField) and \
  34. self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens
  35. def to_sympy(self, a):
  36. """Convert ``a`` to a SymPy object. """
  37. return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
  38. basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
  39. def from_sympy(self, a):
  40. """Convert SymPy's expression to ``dtype``. """
  41. p, q = a.as_numer_denom()
  42. num, _ = dict_from_basic(p, gens=self.gens)
  43. den, _ = dict_from_basic(q, gens=self.gens)
  44. for k, v in num.items():
  45. num[k] = self.dom.from_sympy(v)
  46. for k, v in den.items():
  47. den[k] = self.dom.from_sympy(v)
  48. return self((num, den)).cancel()
  49. def from_ZZ(K1, a, K0):
  50. """Convert a Python ``int`` object to ``dtype``. """
  51. return K1(K1.dom.convert(a, K0))
  52. def from_ZZ_python(K1, a, K0):
  53. """Convert a Python ``int`` object to ``dtype``. """
  54. return K1(K1.dom.convert(a, K0))
  55. def from_QQ_python(K1, a, K0):
  56. """Convert a Python ``Fraction`` object to ``dtype``. """
  57. return K1(K1.dom.convert(a, K0))
  58. def from_ZZ_gmpy(K1, a, K0):
  59. """Convert a GMPY ``mpz`` object to ``dtype``. """
  60. return K1(K1.dom.convert(a, K0))
  61. def from_QQ_gmpy(K1, a, K0):
  62. """Convert a GMPY ``mpq`` object to ``dtype``. """
  63. return K1(K1.dom.convert(a, K0))
  64. def from_RealField(K1, a, K0):
  65. """Convert a mpmath ``mpf`` object to ``dtype``. """
  66. return K1(K1.dom.convert(a, K0))
  67. def from_GlobalPolynomialRing(K1, a, K0):
  68. """Convert a ``DMF`` object to ``dtype``. """
  69. if K1.gens == K0.gens:
  70. if K1.dom == K0.dom:
  71. return K1(a.rep)
  72. else:
  73. return K1(a.convert(K1.dom).rep)
  74. else:
  75. monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
  76. if K1.dom != K0.dom:
  77. coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
  78. return K1(dict(zip(monoms, coeffs)))
  79. def from_FractionField(K1, a, K0):
  80. """
  81. Convert a fraction field element to another fraction field.
  82. Examples
  83. ========
  84. >>> from sympy.polys.polyclasses import DMF
  85. >>> from sympy.polys.domains import ZZ, QQ
  86. >>> from sympy.abc import x
  87. >>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ)
  88. >>> QQx = QQ.old_frac_field(x)
  89. >>> ZZx = ZZ.old_frac_field(x)
  90. >>> QQx.from_FractionField(f, ZZx)
  91. (x + 2)/(x + 1)
  92. """
  93. if K1.gens == K0.gens:
  94. if K1.dom == K0.dom:
  95. return a
  96. else:
  97. return K1((a.numer().convert(K1.dom).rep,
  98. a.denom().convert(K1.dom).rep))
  99. elif set(K0.gens).issubset(K1.gens):
  100. nmonoms, ncoeffs = _dict_reorder(
  101. a.numer().to_dict(), K0.gens, K1.gens)
  102. dmonoms, dcoeffs = _dict_reorder(
  103. a.denom().to_dict(), K0.gens, K1.gens)
  104. if K1.dom != K0.dom:
  105. ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ]
  106. dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ]
  107. return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs))))
  108. def get_ring(self):
  109. """Returns a ring associated with ``self``. """
  110. from sympy.polys.domains import PolynomialRing
  111. return PolynomialRing(self.dom, *self.gens)
  112. def poly_ring(self, *gens):
  113. """Returns a polynomial ring, i.e. `K[X]`. """
  114. raise NotImplementedError('nested domains not allowed')
  115. def frac_field(self, *gens):
  116. """Returns a fraction field, i.e. `K(X)`. """
  117. raise NotImplementedError('nested domains not allowed')
  118. def is_positive(self, a):
  119. """Returns True if ``a`` is positive. """
  120. return self.dom.is_positive(a.numer().LC())
  121. def is_negative(self, a):
  122. """Returns True if ``a`` is negative. """
  123. return self.dom.is_negative(a.numer().LC())
  124. def is_nonpositive(self, a):
  125. """Returns True if ``a`` is non-positive. """
  126. return self.dom.is_nonpositive(a.numer().LC())
  127. def is_nonnegative(self, a):
  128. """Returns True if ``a`` is non-negative. """
  129. return self.dom.is_nonnegative(a.numer().LC())
  130. def numer(self, a):
  131. """Returns numerator of ``a``. """
  132. return a.numer()
  133. def denom(self, a):
  134. """Returns denominator of ``a``. """
  135. return a.denom()
  136. def factorial(self, a):
  137. """Returns factorial of ``a``. """
  138. return self.dtype(self.dom.factorial(a))