123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- """Implementation of :class:`FractionField` class. """
- from sympy.polys.domains.field import Field
- from sympy.polys.domains.compositedomain import CompositeDomain
- from sympy.polys.domains.characteristiczero import CharacteristicZero
- from sympy.polys.polyclasses import DMF
- from sympy.polys.polyerrors import GeneratorsNeeded
- from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
- from sympy.utilities import public
- @public
- class FractionField(Field, CharacteristicZero, CompositeDomain):
- """A class for representing rational function fields. """
- dtype = DMF
- is_FractionField = is_Frac = True
- has_assoc_Ring = True
- has_assoc_Field = True
- def __init__(self, dom, *gens):
- if not gens:
- raise GeneratorsNeeded("generators not specified")
- lev = len(gens) - 1
- self.ngens = len(gens)
- self.zero = self.dtype.zero(lev, dom, ring=self)
- self.one = self.dtype.one(lev, dom, ring=self)
- self.domain = self.dom = dom
- self.symbols = self.gens = gens
- def new(self, element):
- return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
- def __str__(self):
- return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')'
- def __hash__(self):
- return hash((self.__class__.__name__, self.dtype, self.dom, self.gens))
- def __eq__(self, other):
- """Returns ``True`` if two domains are equivalent. """
- return isinstance(other, FractionField) and \
- self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens
- def to_sympy(self, a):
- """Convert ``a`` to a SymPy object. """
- return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
- basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
- def from_sympy(self, a):
- """Convert SymPy's expression to ``dtype``. """
- p, q = a.as_numer_denom()
- num, _ = dict_from_basic(p, gens=self.gens)
- den, _ = dict_from_basic(q, gens=self.gens)
- for k, v in num.items():
- num[k] = self.dom.from_sympy(v)
- for k, v in den.items():
- den[k] = self.dom.from_sympy(v)
- return self((num, den)).cancel()
- def from_ZZ(K1, a, K0):
- """Convert a Python ``int`` object to ``dtype``. """
- return K1(K1.dom.convert(a, K0))
- def from_ZZ_python(K1, a, K0):
- """Convert a Python ``int`` object to ``dtype``. """
- return K1(K1.dom.convert(a, K0))
- def from_QQ_python(K1, a, K0):
- """Convert a Python ``Fraction`` object to ``dtype``. """
- return K1(K1.dom.convert(a, K0))
- def from_ZZ_gmpy(K1, a, K0):
- """Convert a GMPY ``mpz`` object to ``dtype``. """
- return K1(K1.dom.convert(a, K0))
- def from_QQ_gmpy(K1, a, K0):
- """Convert a GMPY ``mpq`` object to ``dtype``. """
- return K1(K1.dom.convert(a, K0))
- def from_RealField(K1, a, K0):
- """Convert a mpmath ``mpf`` object to ``dtype``. """
- return K1(K1.dom.convert(a, K0))
- def from_GlobalPolynomialRing(K1, a, K0):
- """Convert a ``DMF`` object to ``dtype``. """
- if K1.gens == K0.gens:
- if K1.dom == K0.dom:
- return K1(a.rep)
- else:
- return K1(a.convert(K1.dom).rep)
- else:
- monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
- if K1.dom != K0.dom:
- coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
- return K1(dict(zip(monoms, coeffs)))
- def from_FractionField(K1, a, K0):
- """
- Convert a fraction field element to another fraction field.
- Examples
- ========
- >>> from sympy.polys.polyclasses import DMF
- >>> from sympy.polys.domains import ZZ, QQ
- >>> from sympy.abc import x
- >>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ)
- >>> QQx = QQ.old_frac_field(x)
- >>> ZZx = ZZ.old_frac_field(x)
- >>> QQx.from_FractionField(f, ZZx)
- (x + 2)/(x + 1)
- """
- if K1.gens == K0.gens:
- if K1.dom == K0.dom:
- return a
- else:
- return K1((a.numer().convert(K1.dom).rep,
- a.denom().convert(K1.dom).rep))
- elif set(K0.gens).issubset(K1.gens):
- nmonoms, ncoeffs = _dict_reorder(
- a.numer().to_dict(), K0.gens, K1.gens)
- dmonoms, dcoeffs = _dict_reorder(
- a.denom().to_dict(), K0.gens, K1.gens)
- if K1.dom != K0.dom:
- ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ]
- dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ]
- return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs))))
- def get_ring(self):
- """Returns a ring associated with ``self``. """
- from sympy.polys.domains import PolynomialRing
- return PolynomialRing(self.dom, *self.gens)
- def poly_ring(self, *gens):
- """Returns a polynomial ring, i.e. `K[X]`. """
- raise NotImplementedError('nested domains not allowed')
- def frac_field(self, *gens):
- """Returns a fraction field, i.e. `K(X)`. """
- raise NotImplementedError('nested domains not allowed')
- def is_positive(self, a):
- """Returns True if ``a`` is positive. """
- return self.dom.is_positive(a.numer().LC())
- def is_negative(self, a):
- """Returns True if ``a`` is negative. """
- return self.dom.is_negative(a.numer().LC())
- def is_nonpositive(self, a):
- """Returns True if ``a`` is non-positive. """
- return self.dom.is_nonpositive(a.numer().LC())
- def is_nonnegative(self, a):
- """Returns True if ``a`` is non-negative. """
- return self.dom.is_nonnegative(a.numer().LC())
- def numer(self, a):
- """Returns numerator of ``a``. """
- return a.numer()
- def denom(self, a):
- """Returns denominator of ``a``. """
- return a.denom()
- def factorial(self, a):
- """Returns factorial of ``a``. """
- return self.dtype(self.dom.factorial(a))
|