12345678910111213141516171819202122232425 |
- """Benchmark of the Groebner bases algorithms. """
- from sympy.polys.rings import ring
- from sympy.polys.domains import QQ
- from sympy.polys.groebnertools import groebner
- R, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = ring("x1:13", QQ)
- V = R.gens
- E = [(x1, x2), (x2, x3), (x1, x4), (x1, x6), (x1, x12), (x2, x5), (x2, x7), (x3, x8),
- (x3, x10), (x4, x11), (x4, x9), (x5, x6), (x6, x7), (x7, x8), (x8, x9), (x9, x10),
- (x10, x11), (x11, x12), (x5, x12), (x5, x9), (x6, x10), (x7, x11), (x8, x12)]
- F3 = [ x**3 - 1 for x in V ]
- Fg = [ x**2 + x*y + y**2 for x, y in E ]
- F_1 = F3 + Fg
- F_2 = F3 + Fg + [x3**2 + x3*x4 + x4**2]
- def time_vertex_color_12_vertices_23_edges():
- assert groebner(F_1, R) != [1]
- def time_vertex_color_12_vertices_24_edges():
- assert groebner(F_2, R) == [1]
|