123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- """Tests for homomorphisms."""
- from sympy.core.singleton import S
- from sympy.polys.domains.rationalfield import QQ
- from sympy.abc import x, y
- from sympy.polys.agca import homomorphism
- from sympy.testing.pytest import raises
- def test_printing():
- R = QQ.old_poly_ring(x)
- assert str(homomorphism(R.free_module(1), R.free_module(1), [0])) == \
- 'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1'
- assert str(homomorphism(R.free_module(2), R.free_module(2), [0, 0])) == \
- 'Matrix([ \n[0, 0], : QQ[x]**2 -> QQ[x]**2\n[0, 0]]) '
- assert str(homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])) == \
- 'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1/<[x]>'
- assert str(R.free_module(0).identity_hom()) == 'Matrix(0, 0, []) : QQ[x]**0 -> QQ[x]**0'
- def test_operations():
- F = QQ.old_poly_ring(x).free_module(2)
- G = QQ.old_poly_ring(x).free_module(3)
- f = F.identity_hom()
- g = homomorphism(F, F, [0, [1, x]])
- h = homomorphism(F, F, [[1, 0], 0])
- i = homomorphism(F, G, [[1, 0, 0], [0, 1, 0]])
- assert f == f
- assert f != g
- assert f != i
- assert (f != F.identity_hom()) is False
- assert 2*f == f*2 == homomorphism(F, F, [[2, 0], [0, 2]])
- assert f/2 == homomorphism(F, F, [[S.Half, 0], [0, S.Half]])
- assert f + g == homomorphism(F, F, [[1, 0], [1, x + 1]])
- assert f - g == homomorphism(F, F, [[1, 0], [-1, 1 - x]])
- assert f*g == g == g*f
- assert h*g == homomorphism(F, F, [0, [1, 0]])
- assert g*h == homomorphism(F, F, [0, 0])
- assert i*f == i
- assert f([1, 2]) == [1, 2]
- assert g([1, 2]) == [2, 2*x]
- assert i.restrict_domain(F.submodule([x, x]))([x, x]) == i([x, x])
- h1 = h.quotient_domain(F.submodule([0, 1]))
- assert h1([1, 0]) == h([1, 0])
- assert h1.restrict_domain(h1.domain.submodule([x, 0]))([x, 0]) == h([x, 0])
- raises(TypeError, lambda: f/g)
- raises(TypeError, lambda: f + 1)
- raises(TypeError, lambda: f + i)
- raises(TypeError, lambda: f - 1)
- raises(TypeError, lambda: f*i)
- def test_creation():
- F = QQ.old_poly_ring(x).free_module(3)
- G = QQ.old_poly_ring(x).free_module(2)
- SM = F.submodule([1, 1, 1])
- Q = F / SM
- SQ = Q.submodule([1, 0, 0])
- matrix = [[1, 0], [0, 1], [-1, -1]]
- h = homomorphism(F, G, matrix)
- h2 = homomorphism(Q, G, matrix)
- assert h.quotient_domain(SM) == h2
- raises(ValueError, lambda: h.quotient_domain(F.submodule([1, 0, 0])))
- assert h2.restrict_domain(SQ) == homomorphism(SQ, G, matrix)
- raises(ValueError, lambda: h.restrict_domain(G))
- raises(ValueError, lambda: h.restrict_codomain(G.submodule([1, 0])))
- raises(ValueError, lambda: h.quotient_codomain(F))
- im = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
- for M in [F, SM, Q, SQ]:
- assert M.identity_hom() == homomorphism(M, M, im)
- assert SM.inclusion_hom() == homomorphism(SM, F, im)
- assert SQ.inclusion_hom() == homomorphism(SQ, Q, im)
- assert Q.quotient_hom() == homomorphism(F, Q, im)
- assert SQ.quotient_hom() == homomorphism(SQ.base, SQ, im)
- class conv:
- def convert(x, y=None):
- return x
- class dummy:
- container = conv()
- def submodule(*args):
- return None
- raises(TypeError, lambda: homomorphism(dummy(), G, matrix))
- raises(TypeError, lambda: homomorphism(F, dummy(), matrix))
- raises(
- ValueError, lambda: homomorphism(QQ.old_poly_ring(x, y).free_module(3), G, matrix))
- raises(ValueError, lambda: homomorphism(F, G, [0, 0]))
- def test_properties():
- R = QQ.old_poly_ring(x, y)
- F = R.free_module(2)
- h = homomorphism(F, F, [[x, 0], [y, 0]])
- assert h.kernel() == F.submodule([-y, x])
- assert h.image() == F.submodule([x, 0], [y, 0])
- assert not h.is_injective()
- assert not h.is_surjective()
- assert h.restrict_codomain(h.image()).is_surjective()
- assert h.restrict_domain(F.submodule([1, 0])).is_injective()
- assert h.quotient_domain(
- h.kernel()).restrict_codomain(h.image()).is_isomorphism()
- R2 = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1]
- F = R2.free_module(2)
- h = homomorphism(F, F, [[x, 0], [y, y + 1]])
- assert h.is_isomorphism()
|