123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764 |
- import os
- from tempfile import TemporaryDirectory
- from sympy.concrete.summations import Sum
- from sympy.core.numbers import (I, oo, pi)
- from sympy.core.relational import Ne
- from sympy.core.symbol import Symbol
- from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log)
- from sympy.functions.elementary.miscellaneous import (real_root, sqrt)
- from sympy.functions.elementary.piecewise import Piecewise
- from sympy.functions.elementary.trigonometric import (cos, sin)
- from sympy.functions.special.hyper import meijerg
- from sympy.integrals.integrals import Integral
- from sympy.logic.boolalg import And
- from sympy.core.singleton import S
- from sympy.core.sympify import sympify
- from sympy.external import import_module
- from sympy.plotting.plot import (
- Plot, plot, plot_parametric, plot3d_parametric_line, plot3d,
- plot3d_parametric_surface)
- from sympy.plotting.plot import (
- unset_show, plot_contour, PlotGrid, DefaultBackend, MatplotlibBackend,
- TextBackend, BaseBackend)
- from sympy.testing.pytest import skip, raises, warns, warns_deprecated_sympy
- from sympy.utilities import lambdify as lambdify_
- from sympy.utilities.exceptions import ignore_warnings
- unset_show()
- matplotlib = import_module(
- 'matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
- class DummyBackendNotOk(BaseBackend):
- """ Used to verify if users can create their own backends.
- This backend is meant to raise NotImplementedError for methods `show`,
- `save`, `close`.
- """
- pass
- class DummyBackendOk(BaseBackend):
- """ Used to verify if users can create their own backends.
- This backend is meant to pass all tests.
- """
- def show(self):
- pass
- def save(self):
- pass
- def close(self):
- pass
- def test_plot_and_save_1():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- y = Symbol('y')
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- ###
- # Examples from the 'introduction' notebook
- ###
- p = plot(x, legend=True, label='f1')
- p = plot(x*sin(x), x*cos(x), label='f2')
- p.extend(p)
- p[0].line_color = lambda a: a
- p[1].line_color = 'b'
- p.title = 'Big title'
- p.xlabel = 'the x axis'
- p[1].label = 'straight line'
- p.legend = True
- p.aspect_ratio = (1, 1)
- p.xlim = (-15, 20)
- filename = 'test_basic_options_and_colors.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p.extend(plot(x + 1))
- p.append(plot(x + 3, x**2)[1])
- filename = 'test_plot_extend_append.png'
- p.save(os.path.join(tmpdir, filename))
- p[2] = plot(x**2, (x, -2, 3))
- filename = 'test_plot_setitem.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot(sin(x), (x, -2*pi, 4*pi))
- filename = 'test_line_explicit.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot(sin(x))
- filename = 'test_line_default_range.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot((x**2, (x, -5, 5)), (x**3, (x, -3, 3)))
- filename = 'test_line_multiple_range.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- raises(ValueError, lambda: plot(x, y))
- #Piecewise plots
- p = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1))
- filename = 'test_plot_piecewise.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot(Piecewise((x, x < 1), (x**2, True)), (x, -3, 3))
- filename = 'test_plot_piecewise_2.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # test issue 7471
- p1 = plot(x)
- p2 = plot(3)
- p1.extend(p2)
- filename = 'test_horizontal_line.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # test issue 10925
- f = Piecewise((-1, x < -1), (x, And(-1 <= x, x < 0)), \
- (x**2, And(0 <= x, x < 1)), (x**3, x >= 1))
- p = plot(f, (x, -3, 3))
- filename = 'test_plot_piecewise_3.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- def test_plot_and_save_2():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- y = Symbol('y')
- z = Symbol('z')
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- #parametric 2d plots.
- #Single plot with default range.
- p = plot_parametric(sin(x), cos(x))
- filename = 'test_parametric.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- #Single plot with range.
- p = plot_parametric(
- sin(x), cos(x), (x, -5, 5), legend=True, label='parametric_plot')
- filename = 'test_parametric_range.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- #Multiple plots with same range.
- p = plot_parametric((sin(x), cos(x)), (x, sin(x)))
- filename = 'test_parametric_multiple.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- #Multiple plots with different ranges.
- p = plot_parametric(
- (sin(x), cos(x), (x, -3, 3)), (x, sin(x), (x, -5, 5)))
- filename = 'test_parametric_multiple_ranges.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- #depth of recursion specified.
- p = plot_parametric(x, sin(x), depth=13)
- filename = 'test_recursion_depth.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- #No adaptive sampling.
- p = plot_parametric(cos(x), sin(x), adaptive=False, nb_of_points=500)
- filename = 'test_adaptive.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- #3d parametric plots
- p = plot3d_parametric_line(
- sin(x), cos(x), x, legend=True, label='3d_parametric_plot')
- filename = 'test_3d_line.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot3d_parametric_line(
- (sin(x), cos(x), x, (x, -5, 5)), (cos(x), sin(x), x, (x, -3, 3)))
- filename = 'test_3d_line_multiple.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot3d_parametric_line(sin(x), cos(x), x, nb_of_points=30)
- filename = 'test_3d_line_points.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # 3d surface single plot.
- p = plot3d(x * y)
- filename = 'test_surface.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Multiple 3D plots with same range.
- p = plot3d(-x * y, x * y, (x, -5, 5))
- filename = 'test_surface_multiple.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Multiple 3D plots with different ranges.
- p = plot3d(
- (x * y, (x, -3, 3), (y, -3, 3)), (-x * y, (x, -3, 3), (y, -3, 3)))
- filename = 'test_surface_multiple_ranges.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Single Parametric 3D plot
- p = plot3d_parametric_surface(sin(x + y), cos(x - y), x - y)
- filename = 'test_parametric_surface.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Multiple Parametric 3D plots.
- p = plot3d_parametric_surface(
- (x*sin(z), x*cos(z), z, (x, -5, 5), (z, -5, 5)),
- (sin(x + y), cos(x - y), x - y, (x, -5, 5), (y, -5, 5)))
- filename = 'test_parametric_surface.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Single Contour plot.
- p = plot_contour(sin(x)*sin(y), (x, -5, 5), (y, -5, 5))
- filename = 'test_contour_plot.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Multiple Contour plots with same range.
- p = plot_contour(x**2 + y**2, x**3 + y**3, (x, -5, 5), (y, -5, 5))
- filename = 'test_contour_plot.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # Multiple Contour plots with different range.
- p = plot_contour(
- (x**2 + y**2, (x, -5, 5), (y, -5, 5)),
- (x**3 + y**3, (x, -3, 3), (y, -3, 3)))
- filename = 'test_contour_plot.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- def test_plot_and_save_3():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- y = Symbol('y')
- z = Symbol('z')
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- ###
- # Examples from the 'colors' notebook
- ###
- p = plot(sin(x))
- p[0].line_color = lambda a: a
- filename = 'test_colors_line_arity1.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].line_color = lambda a, b: b
- filename = 'test_colors_line_arity2.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot(x*sin(x), x*cos(x), (x, 0, 10))
- p[0].line_color = lambda a: a
- filename = 'test_colors_param_line_arity1.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].line_color = lambda a, b: a
- filename = 'test_colors_param_line_arity1.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].line_color = lambda a, b: b
- filename = 'test_colors_param_line_arity2b.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot3d_parametric_line(sin(x) + 0.1*sin(x)*cos(7*x),
- cos(x) + 0.1*cos(x)*cos(7*x),
- 0.1*sin(7*x),
- (x, 0, 2*pi))
- p[0].line_color = lambdify_(x, sin(4*x))
- filename = 'test_colors_3d_line_arity1.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].line_color = lambda a, b: b
- filename = 'test_colors_3d_line_arity2.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].line_color = lambda a, b, c: c
- filename = 'test_colors_3d_line_arity3.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot3d(sin(x)*y, (x, 0, 6*pi), (y, -5, 5))
- p[0].surface_color = lambda a: a
- filename = 'test_colors_surface_arity1.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].surface_color = lambda a, b: b
- filename = 'test_colors_surface_arity2.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].surface_color = lambda a, b, c: c
- filename = 'test_colors_surface_arity3a.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].surface_color = lambdify_((x, y, z), sqrt((x - 3*pi)**2 + y**2))
- filename = 'test_colors_surface_arity3b.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot3d_parametric_surface(x * cos(4 * y), x * sin(4 * y), y,
- (x, -1, 1), (y, -1, 1))
- p[0].surface_color = lambda a: a
- filename = 'test_colors_param_surf_arity1.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].surface_color = lambda a, b: a*b
- filename = 'test_colors_param_surf_arity2.png'
- p.save(os.path.join(tmpdir, filename))
- p[0].surface_color = lambdify_((x, y, z), sqrt(x**2 + y**2 + z**2))
- filename = 'test_colors_param_surf_arity3.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- def test_plot_and_save_4():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- y = Symbol('y')
- ###
- # Examples from the 'advanced' notebook
- ###
- # XXX: This raises the warning "The evaluation of the expression is
- # problematic. We are trying a failback method that may still work. Please
- # report this as a bug." It has to use the fallback because using evalf()
- # is the only way to evaluate the integral. We should perhaps just remove
- # that warning.
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- with warns(
- UserWarning,
- match="The evaluation of the expression is problematic",
- test_stacklevel=False,
- ):
- i = Integral(log((sin(x)**2 + 1)*sqrt(x**2 + 1)), (x, 0, y))
- p = plot(i, (y, 1, 5))
- filename = 'test_advanced_integral.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- def test_plot_and_save_5():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- y = Symbol('y')
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- s = Sum(1/x**y, (x, 1, oo))
- p = plot(s, (y, 2, 10))
- filename = 'test_advanced_inf_sum.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p = plot(Sum(1/x, (x, 1, y)), (y, 2, 10), show=False)
- p[0].only_integers = True
- p[0].steps = True
- filename = 'test_advanced_fin_sum.png'
- # XXX: This should be fixed in experimental_lambdify or by using
- # ordinary lambdify so that it doesn't warn. The error results from
- # passing an array of values as the integration limit.
- #
- # UserWarning: The evaluation of the expression is problematic. We are
- # trying a failback method that may still work. Please report this as a
- # bug.
- with ignore_warnings(UserWarning):
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- def test_plot_and_save_6():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- filename = 'test.png'
- ###
- # Test expressions that can not be translated to np and generate complex
- # results.
- ###
- p = plot(sin(x) + I*cos(x))
- p.save(os.path.join(tmpdir, filename))
- with ignore_warnings(RuntimeWarning):
- p = plot(sqrt(sqrt(-x)))
- p.save(os.path.join(tmpdir, filename))
- p = plot(LambertW(x))
- p.save(os.path.join(tmpdir, filename))
- p = plot(sqrt(LambertW(x)))
- p.save(os.path.join(tmpdir, filename))
- #Characteristic function of a StudentT distribution with nu=10
- x1 = 5 * x**2 * exp_polar(-I*pi)/2
- m1 = meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), x1)
- x2 = 5*x**2 * exp_polar(I*pi)/2
- m2 = meijerg(((1/2,), ()), ((5, 0, 1/2), ()), x2)
- expr = (m1 + m2) / (48 * pi)
- p = plot(expr, (x, 1e-6, 1e-2))
- p.save(os.path.join(tmpdir, filename))
- def test_plotgrid_and_save():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- y = Symbol('y')
- with TemporaryDirectory(prefix='sympy_') as tmpdir:
- p1 = plot(x)
- p2 = plot_parametric((sin(x), cos(x)), (x, sin(x)), show=False)
- p3 = plot_parametric(
- cos(x), sin(x), adaptive=False, nb_of_points=500, show=False)
- p4 = plot3d_parametric_line(sin(x), cos(x), x, show=False)
- # symmetric grid
- p = PlotGrid(2, 2, p1, p2, p3, p4)
- filename = 'test_grid1.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- # grid size greater than the number of subplots
- p = PlotGrid(3, 4, p1, p2, p3, p4)
- filename = 'test_grid2.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- p5 = plot(cos(x),(x, -pi, pi), show=False)
- p5[0].line_color = lambda a: a
- p6 = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1), show=False)
- p7 = plot_contour(
- (x**2 + y**2, (x, -5, 5), (y, -5, 5)),
- (x**3 + y**3, (x, -3, 3), (y, -3, 3)), show=False)
- # unsymmetric grid (subplots in one line)
- p = PlotGrid(1, 3, p5, p6, p7)
- filename = 'test_grid3.png'
- p.save(os.path.join(tmpdir, filename))
- p._backend.close()
- def test_append_issue_7140():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p1 = plot(x)
- p2 = plot(x**2)
- plot(x + 2)
- # append a series
- p2.append(p1[0])
- assert len(p2._series) == 2
- with raises(TypeError):
- p1.append(p2)
- with raises(TypeError):
- p1.append(p2._series)
- def test_issue_15265():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- eqn = sin(x)
- p = plot(eqn, xlim=(-S.Pi, S.Pi), ylim=(-1, 1))
- p._backend.close()
- p = plot(eqn, xlim=(-1, 1), ylim=(-S.Pi, S.Pi))
- p._backend.close()
- p = plot(eqn, xlim=(-1, 1), ylim=(sympify('-3.14'), sympify('3.14')))
- p._backend.close()
- p = plot(eqn, xlim=(sympify('-3.14'), sympify('3.14')), ylim=(-1, 1))
- p._backend.close()
- raises(ValueError,
- lambda: plot(eqn, xlim=(-S.ImaginaryUnit, 1), ylim=(-1, 1)))
- raises(ValueError,
- lambda: plot(eqn, xlim=(-1, 1), ylim=(-1, S.ImaginaryUnit)))
- raises(ValueError,
- lambda: plot(eqn, xlim=(S.NegativeInfinity, 1), ylim=(-1, 1)))
- raises(ValueError,
- lambda: plot(eqn, xlim=(-1, 1), ylim=(-1, S.Infinity)))
- def test_empty_Plot():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- # No exception showing an empty plot
- plot()
- p = Plot()
- p.show()
- def test_issue_17405():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- f = x**0.3 - 10*x**3 + x**2
- p = plot(f, (x, -10, 10), show=False)
- # Random number of segments, probably more than 100, but we want to see
- # that there are segments generated, as opposed to when the bug was present
- # RuntimeWarning: invalid value encountered in double_scalars
- with ignore_warnings(RuntimeWarning):
- assert len(p[0].get_data()[0]) >= 30
- def test_logplot_PR_16796():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p = plot(x, (x, .001, 100), xscale='log', show=False)
- # Random number of segments, probably more than 100, but we want to see
- # that there are segments generated, as opposed to when the bug was present
- assert len(p[0].get_data()[0]) >= 30
- assert p[0].end == 100.0
- assert p[0].start == .001
- def test_issue_16572():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p = plot(LambertW(x), show=False)
- # Random number of segments, probably more than 50, but we want to see
- # that there are segments generated, as opposed to when the bug was present
- assert len(p[0].get_data()[0]) >= 30
- def test_issue_11865():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- k = Symbol('k', integer=True)
- f = Piecewise((-I*exp(I*pi*k)/k + I*exp(-I*pi*k)/k, Ne(k, 0)), (2*pi, True))
- p = plot(f, show=False)
- # Random number of segments, probably more than 100, but we want to see
- # that there are segments generated, as opposed to when the bug was present
- # and that there are no exceptions.
- assert len(p[0].get_data()[0]) >= 30
- def test_issue_11461():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p = plot(real_root((log(x/(x-2))), 3), show=False)
- # Random number of segments, probably more than 100, but we want to see
- # that there are segments generated, as opposed to when the bug was present
- # and that there are no exceptions.
- assert len(p[0].get_data()[0]) >= 30
- def test_issue_11764():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p = plot_parametric(cos(x), sin(x), (x, 0, 2 * pi), aspect_ratio=(1,1), show=False)
- assert p.aspect_ratio == (1, 1)
- # Random number of segments, probably more than 100, but we want to see
- # that there are segments generated, as opposed to when the bug was present
- assert len(p[0].get_data()[0]) >= 30
- def test_issue_13516():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- pm = plot(sin(x), backend="matplotlib", show=False)
- assert pm.backend == MatplotlibBackend
- assert len(pm[0].get_data()[0]) >= 30
- pt = plot(sin(x), backend="text", show=False)
- assert pt.backend == TextBackend
- assert len(pt[0].get_data()[0]) >= 30
- pd = plot(sin(x), backend="default", show=False)
- assert pd.backend == DefaultBackend
- assert len(pd[0].get_data()[0]) >= 30
- p = plot(sin(x), show=False)
- assert p.backend == DefaultBackend
- assert len(p[0].get_data()[0]) >= 30
- def test_plot_limits():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p = plot(x, x**2, (x, -10, 10))
- backend = p._backend
- xmin, xmax = backend.ax[0].get_xlim()
- assert abs(xmin + 10) < 2
- assert abs(xmax - 10) < 2
- ymin, ymax = backend.ax[0].get_ylim()
- assert abs(ymin + 10) < 10
- assert abs(ymax - 100) < 10
- def test_plot3d_parametric_line_limits():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- v1 = (2*cos(x), 2*sin(x), 2*x, (x, -5, 5))
- v2 = (sin(x), cos(x), x, (x, -5, 5))
- p = plot3d_parametric_line(v1, v2)
- backend = p._backend
- xmin, xmax = backend.ax[0].get_xlim()
- assert abs(xmin + 2) < 1e-2
- assert abs(xmax - 2) < 1e-2
- ymin, ymax = backend.ax[0].get_ylim()
- assert abs(ymin + 2) < 1e-2
- assert abs(ymax - 2) < 1e-2
- zmin, zmax = backend.ax[0].get_zlim()
- assert abs(zmin + 10) < 1e-2
- assert abs(zmax - 10) < 1e-2
- p = plot3d_parametric_line(v2, v1)
- backend = p._backend
- xmin, xmax = backend.ax[0].get_xlim()
- assert abs(xmin + 2) < 1e-2
- assert abs(xmax - 2) < 1e-2
- ymin, ymax = backend.ax[0].get_ylim()
- assert abs(ymin + 2) < 1e-2
- assert abs(ymax - 2) < 1e-2
- zmin, zmax = backend.ax[0].get_zlim()
- assert abs(zmin + 10) < 1e-2
- assert abs(zmax - 10) < 1e-2
- def test_plot_size():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- p1 = plot(sin(x), backend="matplotlib", size=(8, 4))
- s1 = p1._backend.fig.get_size_inches()
- assert (s1[0] == 8) and (s1[1] == 4)
- p2 = plot(sin(x), backend="matplotlib", size=(5, 10))
- s2 = p2._backend.fig.get_size_inches()
- assert (s2[0] == 5) and (s2[1] == 10)
- p3 = PlotGrid(2, 1, p1, p2, size=(6, 2))
- s3 = p3._backend.fig.get_size_inches()
- assert (s3[0] == 6) and (s3[1] == 2)
- with raises(ValueError):
- plot(sin(x), backend="matplotlib", size=(-1, 3))
- def test_issue_20113():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- # verify the capability to use custom backends
- with raises(TypeError):
- plot(sin(x), backend=Plot, show=False)
- p2 = plot(sin(x), backend=MatplotlibBackend, show=False)
- assert p2.backend == MatplotlibBackend
- assert len(p2[0].get_data()[0]) >= 30
- p3 = plot(sin(x), backend=DummyBackendOk, show=False)
- assert p3.backend == DummyBackendOk
- assert len(p3[0].get_data()[0]) >= 30
- # test for an improper coded backend
- p4 = plot(sin(x), backend=DummyBackendNotOk, show=False)
- assert p4.backend == DummyBackendNotOk
- assert len(p4[0].get_data()[0]) >= 30
- with raises(NotImplementedError):
- p4.show()
- with raises(NotImplementedError):
- p4.save("test/path")
- with raises(NotImplementedError):
- p4._backend.close()
- def test_custom_coloring():
- x = Symbol('x')
- y = Symbol('y')
- plot(cos(x), line_color=lambda a: a)
- plot(cos(x), line_color=1)
- plot(cos(x), line_color="r")
- plot_parametric(cos(x), sin(x), line_color=lambda a: a)
- plot_parametric(cos(x), sin(x), line_color=1)
- plot_parametric(cos(x), sin(x), line_color="r")
- plot3d_parametric_line(cos(x), sin(x), x, line_color=lambda a: a)
- plot3d_parametric_line(cos(x), sin(x), x, line_color=1)
- plot3d_parametric_line(cos(x), sin(x), x, line_color="r")
- plot3d_parametric_surface(cos(x + y), sin(x - y), x - y,
- (x, -5, 5), (y, -5, 5),
- surface_color=lambda a, b: a**2 + b**2)
- plot3d_parametric_surface(cos(x + y), sin(x - y), x - y,
- (x, -5, 5), (y, -5, 5),
- surface_color=1)
- plot3d_parametric_surface(cos(x + y), sin(x - y), x - y,
- (x, -5, 5), (y, -5, 5),
- surface_color="r")
- plot3d(x*y, (x, -5, 5), (y, -5, 5),
- surface_color=lambda a, b: a**2 + b**2)
- plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color=1)
- plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color="r")
- def test_deprecated_get_segments():
- if not matplotlib:
- skip("Matplotlib not the default backend")
- x = Symbol('x')
- f = sin(x)
- p = plot(f, (x, -10, 10), show=False)
- with warns_deprecated_sympy():
- p[0].get_segments()
|