test_clebsch_gordan.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. from sympy.core.numbers import (I, pi, Rational)
  2. from sympy.core.singleton import S
  3. from sympy.core.symbol import symbols
  4. from sympy.functions.elementary.exponential import exp
  5. from sympy.functions.elementary.miscellaneous import sqrt
  6. from sympy.functions.elementary.trigonometric import (cos, sin)
  7. from sympy.functions.special.spherical_harmonics import Ynm
  8. from sympy.matrices.dense import Matrix
  9. from sympy.physics.wigner import (clebsch_gordan, wigner_9j, wigner_6j, gaunt,
  10. real_gaunt, racah, dot_rot_grad_Ynm, wigner_3j, wigner_d_small, wigner_d)
  11. from sympy.testing.pytest import raises
  12. # for test cases, refer : https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients
  13. def test_clebsch_gordan_docs():
  14. assert clebsch_gordan(Rational(3, 2), S.Half, 2, Rational(3, 2), S.Half, 2) == 1
  15. assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(3, 2), Rational(-1, 2), 1) == sqrt(3)/2
  16. assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(-1, 2), S.Half, 0) == -sqrt(2)/2
  17. def test_clebsch_gordan():
  18. # Argument order: (j_1, j_2, j, m_1, m_2, m)
  19. h = S.One
  20. k = S.Half
  21. l = Rational(3, 2)
  22. i = Rational(-1, 2)
  23. n = Rational(7, 2)
  24. p = Rational(5, 2)
  25. assert clebsch_gordan(k, k, 1, k, k, 1) == 1
  26. assert clebsch_gordan(k, k, 1, k, k, 0) == 0
  27. assert clebsch_gordan(k, k, 1, i, i, -1) == 1
  28. assert clebsch_gordan(k, k, 1, k, i, 0) == sqrt(2)/2
  29. assert clebsch_gordan(k, k, 0, k, i, 0) == sqrt(2)/2
  30. assert clebsch_gordan(k, k, 1, i, k, 0) == sqrt(2)/2
  31. assert clebsch_gordan(k, k, 0, i, k, 0) == -sqrt(2)/2
  32. assert clebsch_gordan(h, k, l, 1, k, l) == 1
  33. assert clebsch_gordan(h, k, l, 1, i, k) == 1/sqrt(3)
  34. assert clebsch_gordan(h, k, k, 1, i, k) == sqrt(2)/sqrt(3)
  35. assert clebsch_gordan(h, k, k, 0, k, k) == -1/sqrt(3)
  36. assert clebsch_gordan(h, k, l, 0, k, k) == sqrt(2)/sqrt(3)
  37. assert clebsch_gordan(h, h, S(2), 1, 1, S(2)) == 1
  38. assert clebsch_gordan(h, h, S(2), 1, 0, 1) == 1/sqrt(2)
  39. assert clebsch_gordan(h, h, S(2), 0, 1, 1) == 1/sqrt(2)
  40. assert clebsch_gordan(h, h, 1, 1, 0, 1) == 1/sqrt(2)
  41. assert clebsch_gordan(h, h, 1, 0, 1, 1) == -1/sqrt(2)
  42. assert clebsch_gordan(l, l, S(3), l, l, S(3)) == 1
  43. assert clebsch_gordan(l, l, S(2), l, k, S(2)) == 1/sqrt(2)
  44. assert clebsch_gordan(l, l, S(3), l, k, S(2)) == 1/sqrt(2)
  45. assert clebsch_gordan(S(2), S(2), S(4), S(2), S(2), S(4)) == 1
  46. assert clebsch_gordan(S(2), S(2), S(3), S(2), 1, S(3)) == 1/sqrt(2)
  47. assert clebsch_gordan(S(2), S(2), S(3), 1, 1, S(2)) == 0
  48. assert clebsch_gordan(p, h, n, p, 1, n) == 1
  49. assert clebsch_gordan(p, h, p, p, 0, p) == sqrt(5)/sqrt(7)
  50. assert clebsch_gordan(p, h, l, k, 1, l) == 1/sqrt(15)
  51. def test_wigner():
  52. def tn(a, b):
  53. return (a - b).n(64) < S('1e-64')
  54. assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), Rational(1, 18))
  55. assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt(
  56. 70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105))
  57. assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52)
  58. assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), Rational(-12219, 965770))
  59. # regression test for #8747
  60. half = S.Half
  61. assert wigner_9j(0, 0, 0, 0, half, half, 0, half, half) == half
  62. assert (wigner_9j(3, 5, 4,
  63. 7 * half, 5 * half, 4,
  64. 9 * half, 9 * half, 0)
  65. == -sqrt(Rational(361, 205821000)))
  66. assert (wigner_9j(1, 4, 3,
  67. 5 * half, 4, 5 * half,
  68. 5 * half, 2, 7 * half)
  69. == -sqrt(Rational(3971, 373403520)))
  70. assert (wigner_9j(4, 9 * half, 5 * half,
  71. 2, 4, 4,
  72. 5, 7 * half, 7 * half)
  73. == -sqrt(Rational(3481, 5042614500)))
  74. def test_gaunt():
  75. def tn(a, b):
  76. return (a - b).n(64) < S('1e-64')
  77. assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi))
  78. assert isinstance(gaunt(1, 1, 0, -1, 1, 0).args[0], Rational)
  79. assert isinstance(gaunt(0, 1, 1, 0, -1, 1).args[0], Rational)
  80. assert tn(gaunt(
  81. 10, 10, 12, 9, 3, -12, prec=64), (Rational(-98, 62031)) * sqrt(6279)/sqrt(pi))
  82. def gaunt_ref(l1, l2, l3, m1, m2, m3):
  83. return (
  84. sqrt((2 * l1 + 1) * (2 * l2 + 1) * (2 * l3 + 1) / (4 * pi)) *
  85. wigner_3j(l1, l2, l3, 0, 0, 0) *
  86. wigner_3j(l1, l2, l3, m1, m2, m3)
  87. )
  88. threshold = 1e-10
  89. l_max = 3
  90. l3_max = 24
  91. for l1 in range(l_max + 1):
  92. for l2 in range(l_max + 1):
  93. for l3 in range(l3_max + 1):
  94. for m1 in range(-l1, l1 + 1):
  95. for m2 in range(-l2, l2 + 1):
  96. for m3 in range(-l3, l3 + 1):
  97. args = l1, l2, l3, m1, m2, m3
  98. g = gaunt(*args)
  99. g0 = gaunt_ref(*args)
  100. assert abs(g - g0) < threshold
  101. if m1 + m2 + m3 != 0:
  102. assert abs(g) < threshold
  103. if (l1 + l2 + l3) % 2:
  104. assert abs(g) < threshold
  105. assert gaunt(1, 1, 0, 0, 2, -2) is S.Zero
  106. def test_realgaunt():
  107. # All non-zero values corresponding to l values from 0 to 2
  108. for l in range(3):
  109. for m in range(-l, l+1):
  110. assert real_gaunt(0, l, l, 0, m, m) == 1/(2*sqrt(pi))
  111. assert real_gaunt(1, 1, 2, 0, 0, 0) == sqrt(5)/(5*sqrt(pi))
  112. assert real_gaunt(1, 1, 2, 1, 1, 0) == -sqrt(5)/(10*sqrt(pi))
  113. assert real_gaunt(2, 2, 2, 0, 0, 0) == sqrt(5)/(7*sqrt(pi))
  114. assert real_gaunt(2, 2, 2, 0, 2, 2) == -sqrt(5)/(7*sqrt(pi))
  115. assert real_gaunt(2, 2, 2, -2, -2, 0) == -sqrt(5)/(7*sqrt(pi))
  116. assert real_gaunt(1, 1, 2, -1, 0, -1) == sqrt(15)/(10*sqrt(pi))
  117. assert real_gaunt(1, 1, 2, 0, 1, 1) == sqrt(15)/(10*sqrt(pi))
  118. assert real_gaunt(1, 1, 2, 1, 1, 2) == sqrt(15)/(10*sqrt(pi))
  119. assert real_gaunt(1, 1, 2, -1, 1, -2) == -sqrt(15)/(10*sqrt(pi))
  120. assert real_gaunt(1, 1, 2, -1, -1, 2) == -sqrt(15)/(10*sqrt(pi))
  121. assert real_gaunt(2, 2, 2, 0, 1, 1) == sqrt(5)/(14*sqrt(pi))
  122. assert real_gaunt(2, 2, 2, 1, 1, 2) == sqrt(15)/(14*sqrt(pi))
  123. assert real_gaunt(2, 2, 2, -1, -1, 2) == -sqrt(15)/(14*sqrt(pi))
  124. assert real_gaunt(-2, -2, -2, -2, -2, 0) is S.Zero # m test
  125. assert real_gaunt(-2, 1, 0, 1, 1, 1) is S.Zero # l test
  126. assert real_gaunt(-2, -1, -2, -1, -1, 0) is S.Zero # m and l test
  127. assert real_gaunt(-2, -2, -2, -2, -2, -2) is S.Zero # m and k test
  128. assert real_gaunt(-2, -1, -2, -1, -1, -1) is S.Zero # m, l and k test
  129. x = symbols('x', integer=True)
  130. v = [0]*6
  131. for i in range(len(v)):
  132. v[i] = x # non literal ints fail
  133. raises(ValueError, lambda: real_gaunt(*v))
  134. v[i] = 0
  135. def test_racah():
  136. assert racah(3,3,3,3,3,3) == Rational(-1,14)
  137. assert racah(2,2,2,2,2,2) == Rational(-3,70)
  138. assert racah(7,8,7,1,7,7, prec=4).is_Float
  139. assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924
  140. assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4')
  141. def test_dot_rota_grad_SH():
  142. theta, phi = symbols("theta phi")
  143. assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) != \
  144. sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
  145. assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() == \
  146. sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
  147. assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) != \
  148. 0
  149. assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() == \
  150. 0
  151. assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() == \
  152. 15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi))
  153. assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() == \
  154. sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi)
  155. assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() == \
  156. 3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
  157. assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit().expand() == \
  158. -sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \
  159. 45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi))
  160. def test_wigner_d():
  161. half = S(1)/2
  162. alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
  163. d = wigner_d_small(half, beta).subs({beta: pi/2})
  164. d_ = Matrix([[1, 1], [-1, 1]])/sqrt(2)
  165. assert d == d_
  166. D = wigner_d(half, alpha, beta, gamma)
  167. assert D[0, 0] == exp(I*alpha/2)*exp(I*gamma/2)*cos(beta/2)
  168. assert D[0, 1] == exp(I*alpha/2)*exp(-I*gamma/2)*sin(beta/2)
  169. assert D[1, 0] == -exp(-I*alpha/2)*exp(I*gamma/2)*sin(beta/2)
  170. assert D[1, 1] == exp(-I*alpha/2)*exp(-I*gamma/2)*cos(beta/2)