test_qubit.py 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. import random
  2. from sympy.core.numbers import (Integer, Rational)
  3. from sympy.core.singleton import S
  4. from sympy.core.symbol import symbols
  5. from sympy.functions.elementary.miscellaneous import sqrt
  6. from sympy.matrices.dense import Matrix
  7. from sympy.physics.quantum.qubit import (measure_all, measure_partial,
  8. matrix_to_qubit, matrix_to_density,
  9. qubit_to_matrix, IntQubit,
  10. IntQubitBra, QubitBra)
  11. from sympy.physics.quantum.gate import (HadamardGate, CNOT, XGate, YGate,
  12. ZGate, PhaseGate)
  13. from sympy.physics.quantum.qapply import qapply
  14. from sympy.physics.quantum.represent import represent
  15. from sympy.physics.quantum.shor import Qubit
  16. from sympy.testing.pytest import raises
  17. from sympy.physics.quantum.density import Density
  18. from sympy.physics.quantum.trace import Tr
  19. x, y = symbols('x,y')
  20. epsilon = .000001
  21. def test_Qubit():
  22. array = [0, 0, 1, 1, 0]
  23. qb = Qubit('00110')
  24. assert qb.flip(0) == Qubit('00111')
  25. assert qb.flip(1) == Qubit('00100')
  26. assert qb.flip(4) == Qubit('10110')
  27. assert qb.qubit_values == (0, 0, 1, 1, 0)
  28. assert qb.dimension == 5
  29. for i in range(5):
  30. assert qb[i] == array[4 - i]
  31. assert len(qb) == 5
  32. qb = Qubit('110')
  33. def test_QubitBra():
  34. qb = Qubit(0)
  35. qb_bra = QubitBra(0)
  36. assert qb.dual_class() == QubitBra
  37. assert qb_bra.dual_class() == Qubit
  38. qb = Qubit(1, 1, 0)
  39. qb_bra = QubitBra(1, 1, 0)
  40. assert represent(qb, nqubits=3).H == represent(qb_bra, nqubits=3)
  41. qb = Qubit(0, 1)
  42. qb_bra = QubitBra(1,0)
  43. assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(0)
  44. qb_bra = QubitBra(0, 1)
  45. assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(1)
  46. def test_IntQubit():
  47. # issue 9136
  48. iqb = IntQubit(0, nqubits=1)
  49. assert qubit_to_matrix(Qubit('0')) == qubit_to_matrix(iqb)
  50. qb = Qubit('1010')
  51. assert qubit_to_matrix(IntQubit(qb)) == qubit_to_matrix(qb)
  52. iqb = IntQubit(1, nqubits=1)
  53. assert qubit_to_matrix(Qubit('1')) == qubit_to_matrix(iqb)
  54. assert qubit_to_matrix(IntQubit(1)) == qubit_to_matrix(iqb)
  55. iqb = IntQubit(7, nqubits=4)
  56. assert qubit_to_matrix(Qubit('0111')) == qubit_to_matrix(iqb)
  57. assert qubit_to_matrix(IntQubit(7, 4)) == qubit_to_matrix(iqb)
  58. iqb = IntQubit(8)
  59. assert iqb.as_int() == 8
  60. assert iqb.qubit_values == (1, 0, 0, 0)
  61. iqb = IntQubit(7, 4)
  62. assert iqb.qubit_values == (0, 1, 1, 1)
  63. assert IntQubit(3) == IntQubit(3, 2)
  64. #test Dual Classes
  65. iqb = IntQubit(3)
  66. iqb_bra = IntQubitBra(3)
  67. assert iqb.dual_class() == IntQubitBra
  68. assert iqb_bra.dual_class() == IntQubit
  69. iqb = IntQubit(5)
  70. iqb_bra = IntQubitBra(5)
  71. assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(1)
  72. iqb = IntQubit(4)
  73. iqb_bra = IntQubitBra(5)
  74. assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(0)
  75. raises(ValueError, lambda: IntQubit(4, 1))
  76. raises(ValueError, lambda: IntQubit('5'))
  77. raises(ValueError, lambda: IntQubit(5, '5'))
  78. raises(ValueError, lambda: IntQubit(5, nqubits='5'))
  79. raises(TypeError, lambda: IntQubit(5, bad_arg=True))
  80. def test_superposition_of_states():
  81. state = 1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10')
  82. state_gate = CNOT(0, 1)*HadamardGate(0)*state
  83. state_expanded = Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2
  84. assert qapply(state_gate).expand() == state_expanded
  85. assert matrix_to_qubit(represent(state_gate, nqubits=2)) == state_expanded
  86. #test apply methods
  87. def test_apply_represent_equality():
  88. gates = [HadamardGate(int(3*random.random())),
  89. XGate(int(3*random.random())), ZGate(int(3*random.random())),
  90. YGate(int(3*random.random())), ZGate(int(3*random.random())),
  91. PhaseGate(int(3*random.random()))]
  92. circuit = Qubit(int(random.random()*2), int(random.random()*2),
  93. int(random.random()*2), int(random.random()*2), int(random.random()*2),
  94. int(random.random()*2))
  95. for i in range(int(random.random()*6)):
  96. circuit = gates[int(random.random()*6)]*circuit
  97. mat = represent(circuit, nqubits=6)
  98. states = qapply(circuit)
  99. state_rep = matrix_to_qubit(mat)
  100. states = states.expand()
  101. state_rep = state_rep.expand()
  102. assert state_rep == states
  103. def test_matrix_to_qubits():
  104. qb = Qubit(0, 0, 0, 0)
  105. mat = Matrix([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
  106. assert matrix_to_qubit(mat) == qb
  107. assert qubit_to_matrix(qb) == mat
  108. state = 2*sqrt(2)*(Qubit(0, 0, 0) + Qubit(0, 0, 1) + Qubit(0, 1, 0) +
  109. Qubit(0, 1, 1) + Qubit(1, 0, 0) + Qubit(1, 0, 1) +
  110. Qubit(1, 1, 0) + Qubit(1, 1, 1))
  111. ones = sqrt(2)*2*Matrix([1, 1, 1, 1, 1, 1, 1, 1])
  112. assert matrix_to_qubit(ones) == state.expand()
  113. assert qubit_to_matrix(state) == ones
  114. def test_measure_normalize():
  115. a, b = symbols('a b')
  116. state = a*Qubit('110') + b*Qubit('111')
  117. assert measure_partial(state, (0,), normalize=False) == \
  118. [(a*Qubit('110'), a*a.conjugate()), (b*Qubit('111'), b*b.conjugate())]
  119. assert measure_all(state, normalize=False) == \
  120. [(Qubit('110'), a*a.conjugate()), (Qubit('111'), b*b.conjugate())]
  121. def test_measure_partial():
  122. #Basic test of collapse of entangled two qubits (Bell States)
  123. state = Qubit('01') + Qubit('10')
  124. assert measure_partial(state, (0,)) == \
  125. [(Qubit('10'), S.Half), (Qubit('01'), S.Half)]
  126. assert measure_partial(state, int(0)) == \
  127. [(Qubit('10'), S.Half), (Qubit('01'), S.Half)]
  128. assert measure_partial(state, (0,)) == \
  129. measure_partial(state, (1,))[::-1]
  130. #Test of more complex collapse and probability calculation
  131. state1 = sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111')
  132. assert measure_partial(state1, (0,)) == \
  133. [(sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111'), 1)]
  134. assert measure_partial(state1, (1, 2)) == measure_partial(state1, (3, 4))
  135. assert measure_partial(state1, (1, 2, 3)) == \
  136. [(Qubit('00001'), Rational(2, 3)), (Qubit('11111'), Rational(1, 3))]
  137. #test of measuring multiple bits at once
  138. state2 = Qubit('1111') + Qubit('1101') + Qubit('1011') + Qubit('1000')
  139. assert measure_partial(state2, (0, 1, 3)) == \
  140. [(Qubit('1000'), Rational(1, 4)), (Qubit('1101'), Rational(1, 4)),
  141. (Qubit('1011')/sqrt(2) + Qubit('1111')/sqrt(2), S.Half)]
  142. assert measure_partial(state2, (0,)) == \
  143. [(Qubit('1000'), Rational(1, 4)),
  144. (Qubit('1111')/sqrt(3) + Qubit('1101')/sqrt(3) +
  145. Qubit('1011')/sqrt(3), Rational(3, 4))]
  146. def test_measure_all():
  147. assert measure_all(Qubit('11')) == [(Qubit('11'), 1)]
  148. state = Qubit('11') + Qubit('10')
  149. assert measure_all(state) == [(Qubit('10'), S.Half),
  150. (Qubit('11'), S.Half)]
  151. state2 = Qubit('11')/sqrt(5) + 2*Qubit('00')/sqrt(5)
  152. assert measure_all(state2) == \
  153. [(Qubit('00'), Rational(4, 5)), (Qubit('11'), Rational(1, 5))]
  154. # from issue #12585
  155. assert measure_all(qapply(Qubit('0'))) == [(Qubit('0'), 1)]
  156. def test_eval_trace():
  157. q1 = Qubit('10110')
  158. q2 = Qubit('01010')
  159. d = Density([q1, 0.6], [q2, 0.4])
  160. t = Tr(d)
  161. assert t.doit() == 1.0
  162. # extreme bits
  163. t = Tr(d, 0)
  164. assert t.doit() == (0.4*Density([Qubit('0101'), 1]) +
  165. 0.6*Density([Qubit('1011'), 1]))
  166. t = Tr(d, 4)
  167. assert t.doit() == (0.4*Density([Qubit('1010'), 1]) +
  168. 0.6*Density([Qubit('0110'), 1]))
  169. # index somewhere in between
  170. t = Tr(d, 2)
  171. assert t.doit() == (0.4*Density([Qubit('0110'), 1]) +
  172. 0.6*Density([Qubit('1010'), 1]))
  173. #trace all indices
  174. t = Tr(d, [0, 1, 2, 3, 4])
  175. assert t.doit() == 1.0
  176. # trace some indices, initialized in
  177. # non-canonical order
  178. t = Tr(d, [2, 1, 3])
  179. assert t.doit() == (0.4*Density([Qubit('00'), 1]) +
  180. 0.6*Density([Qubit('10'), 1]))
  181. # mixed states
  182. q = (1/sqrt(2)) * (Qubit('00') + Qubit('11'))
  183. d = Density( [q, 1.0] )
  184. t = Tr(d, 0)
  185. assert t.doit() == (0.5*Density([Qubit('0'), 1]) +
  186. 0.5*Density([Qubit('1'), 1]))
  187. def test_matrix_to_density():
  188. mat = Matrix([[0, 0], [0, 1]])
  189. assert matrix_to_density(mat) == Density([Qubit('1'), 1])
  190. mat = Matrix([[1, 0], [0, 0]])
  191. assert matrix_to_density(mat) == Density([Qubit('0'), 1])
  192. mat = Matrix([[0, 0], [0, 0]])
  193. assert matrix_to_density(mat) == 0
  194. mat = Matrix([[0, 0, 0, 0],
  195. [0, 0, 0, 0],
  196. [0, 0, 1, 0],
  197. [0, 0, 0, 0]])
  198. assert matrix_to_density(mat) == Density([Qubit('10'), 1])
  199. mat = Matrix([[1, 0, 0, 0],
  200. [0, 0, 0, 0],
  201. [0, 0, 0, 0],
  202. [0, 0, 0, 0]])
  203. assert matrix_to_density(mat) == Density([Qubit('00'), 1])