12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- from sympy.core.numbers import Integer
- from sympy.core.symbol import Symbol
- from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence
- from sympy.physics.quantum.hilbert import HilbertSpace
- from sympy.core.containers import Tuple
- x = Symbol('x')
- y = Symbol('y')
- def test_qexpr_new():
- q = QExpr(0)
- assert q.label == (0,)
- assert q.hilbert_space == HilbertSpace()
- assert q.is_commutative is False
- q = QExpr(0, 1)
- assert q.label == (Integer(0), Integer(1))
- q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1))
- assert q.label == (Integer(0), Integer(1))
- assert q.hilbert_space == HilbertSpace()
- def test_qexpr_commutative():
- q1 = QExpr(x)
- q2 = QExpr(y)
- assert q1.is_commutative is False
- assert q2.is_commutative is False
- assert q1*q2 != q2*q1
- q = QExpr._new_rawargs(Integer(0), Integer(1), HilbertSpace())
- assert q.is_commutative is False
- def test_qexpr_commutative_free_symbols():
- q1 = QExpr(x)
- assert q1.free_symbols.pop().is_commutative is False
- q2 = QExpr('q2')
- assert q2.free_symbols.pop().is_commutative is False
- def test_qexpr_subs():
- q1 = QExpr(x, y)
- assert q1.subs(x, y) == QExpr(y, y)
- assert q1.subs({x: 1, y: 2}) == QExpr(1, 2)
- def test_qsympify():
- assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3))
- assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \
- (Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3)
- assert _qsympify_sequence((1,)) == (1,)
|