test_pauli.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. from sympy.core.mul import Mul
  2. from sympy.core.numbers import I
  3. from sympy.matrices.dense import Matrix
  4. from sympy.printing.latex import latex
  5. from sympy.physics.quantum import (Dagger, Commutator, AntiCommutator, qapply,
  6. Operator, represent)
  7. from sympy.physics.quantum.pauli import (SigmaOpBase, SigmaX, SigmaY, SigmaZ,
  8. SigmaMinus, SigmaPlus,
  9. qsimplify_pauli)
  10. from sympy.physics.quantum.pauli import SigmaZKet, SigmaZBra
  11. from sympy.testing.pytest import raises
  12. sx, sy, sz = SigmaX(), SigmaY(), SigmaZ()
  13. sx1, sy1, sz1 = SigmaX(1), SigmaY(1), SigmaZ(1)
  14. sx2, sy2, sz2 = SigmaX(2), SigmaY(2), SigmaZ(2)
  15. sm, sp = SigmaMinus(), SigmaPlus()
  16. sm1, sp1 = SigmaMinus(1), SigmaPlus(1)
  17. A, B = Operator("A"), Operator("B")
  18. def test_pauli_operators_types():
  19. assert isinstance(sx, SigmaOpBase) and isinstance(sx, SigmaX)
  20. assert isinstance(sy, SigmaOpBase) and isinstance(sy, SigmaY)
  21. assert isinstance(sz, SigmaOpBase) and isinstance(sz, SigmaZ)
  22. assert isinstance(sm, SigmaOpBase) and isinstance(sm, SigmaMinus)
  23. assert isinstance(sp, SigmaOpBase) and isinstance(sp, SigmaPlus)
  24. def test_pauli_operators_commutator():
  25. assert Commutator(sx, sy).doit() == 2 * I * sz
  26. assert Commutator(sy, sz).doit() == 2 * I * sx
  27. assert Commutator(sz, sx).doit() == 2 * I * sy
  28. def test_pauli_operators_commutator_with_labels():
  29. assert Commutator(sx1, sy1).doit() == 2 * I * sz1
  30. assert Commutator(sy1, sz1).doit() == 2 * I * sx1
  31. assert Commutator(sz1, sx1).doit() == 2 * I * sy1
  32. assert Commutator(sx2, sy2).doit() == 2 * I * sz2
  33. assert Commutator(sy2, sz2).doit() == 2 * I * sx2
  34. assert Commutator(sz2, sx2).doit() == 2 * I * sy2
  35. assert Commutator(sx1, sy2).doit() == 0
  36. assert Commutator(sy1, sz2).doit() == 0
  37. assert Commutator(sz1, sx2).doit() == 0
  38. def test_pauli_operators_anticommutator():
  39. assert AntiCommutator(sy, sz).doit() == 0
  40. assert AntiCommutator(sz, sx).doit() == 0
  41. assert AntiCommutator(sx, sm).doit() == 1
  42. assert AntiCommutator(sx, sp).doit() == 1
  43. def test_pauli_operators_adjoint():
  44. assert Dagger(sx) == sx
  45. assert Dagger(sy) == sy
  46. assert Dagger(sz) == sz
  47. def test_pauli_operators_adjoint_with_labels():
  48. assert Dagger(sx1) == sx1
  49. assert Dagger(sy1) == sy1
  50. assert Dagger(sz1) == sz1
  51. assert Dagger(sx1) != sx2
  52. assert Dagger(sy1) != sy2
  53. assert Dagger(sz1) != sz2
  54. def test_pauli_operators_multiplication():
  55. assert qsimplify_pauli(sx * sx) == 1
  56. assert qsimplify_pauli(sy * sy) == 1
  57. assert qsimplify_pauli(sz * sz) == 1
  58. assert qsimplify_pauli(sx * sy) == I * sz
  59. assert qsimplify_pauli(sy * sz) == I * sx
  60. assert qsimplify_pauli(sz * sx) == I * sy
  61. assert qsimplify_pauli(sy * sx) == - I * sz
  62. assert qsimplify_pauli(sz * sy) == - I * sx
  63. assert qsimplify_pauli(sx * sz) == - I * sy
  64. def test_pauli_operators_multiplication_with_labels():
  65. assert qsimplify_pauli(sx1 * sx1) == 1
  66. assert qsimplify_pauli(sy1 * sy1) == 1
  67. assert qsimplify_pauli(sz1 * sz1) == 1
  68. assert isinstance(sx1 * sx2, Mul)
  69. assert isinstance(sy1 * sy2, Mul)
  70. assert isinstance(sz1 * sz2, Mul)
  71. assert qsimplify_pauli(sx1 * sy1 * sx2 * sy2) == - sz1 * sz2
  72. assert qsimplify_pauli(sy1 * sz1 * sz2 * sx2) == - sx1 * sy2
  73. def test_pauli_states():
  74. sx, sz = SigmaX(), SigmaZ()
  75. up = SigmaZKet(0)
  76. down = SigmaZKet(1)
  77. assert qapply(sx * up) == down
  78. assert qapply(sx * down) == up
  79. assert qapply(sz * up) == up
  80. assert qapply(sz * down) == - down
  81. up = SigmaZBra(0)
  82. down = SigmaZBra(1)
  83. assert qapply(up * sx, dagger=True) == down
  84. assert qapply(down * sx, dagger=True) == up
  85. assert qapply(up * sz, dagger=True) == up
  86. assert qapply(down * sz, dagger=True) == - down
  87. assert Dagger(SigmaZKet(0)) == SigmaZBra(0)
  88. assert Dagger(SigmaZBra(1)) == SigmaZKet(1)
  89. raises(ValueError, lambda: SigmaZBra(2))
  90. raises(ValueError, lambda: SigmaZKet(2))
  91. def test_use_name():
  92. assert sm.use_name is False
  93. assert sm1.use_name is True
  94. assert sx.use_name is False
  95. assert sx1.use_name is True
  96. def test_printing():
  97. assert latex(sx) == r'{\sigma_x}'
  98. assert latex(sx1) == r'{\sigma_x^{(1)}}'
  99. assert latex(sy) == r'{\sigma_y}'
  100. assert latex(sy1) == r'{\sigma_y^{(1)}}'
  101. assert latex(sz) == r'{\sigma_z}'
  102. assert latex(sz1) == r'{\sigma_z^{(1)}}'
  103. assert latex(sm) == r'{\sigma_-}'
  104. assert latex(sm1) == r'{\sigma_-^{(1)}}'
  105. assert latex(sp) == r'{\sigma_+}'
  106. assert latex(sp1) == r'{\sigma_+^{(1)}}'
  107. def test_represent():
  108. assert represent(sx) == Matrix([[0, 1], [1, 0]])
  109. assert represent(sy) == Matrix([[0, -I], [I, 0]])
  110. assert represent(sz) == Matrix([[1, 0], [0, -1]])
  111. assert represent(sm) == Matrix([[0, 0], [1, 0]])
  112. assert represent(sp) == Matrix([[0, 1], [0, 0]])