123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- from sympy.core.mul import Mul
- from sympy.core.numbers import Integer
- from sympy.core.symbol import Symbol
- from sympy.utilities import numbered_symbols
- from sympy.physics.quantum.gate import X, Y, Z, H, CNOT, CGate
- from sympy.physics.quantum.identitysearch import bfs_identity_search
- from sympy.physics.quantum.circuitutils import (kmp_table, find_subcircuit,
- replace_subcircuit, convert_to_symbolic_indices,
- convert_to_real_indices, random_reduce, random_insert,
- flatten_ids)
- from sympy.testing.pytest import slow
- def create_gate_sequence(qubit=0):
- gates = (X(qubit), Y(qubit), Z(qubit), H(qubit))
- return gates
- def test_kmp_table():
- word = ('a', 'b', 'c', 'd', 'a', 'b', 'd')
- expected_table = [-1, 0, 0, 0, 0, 1, 2]
- assert expected_table == kmp_table(word)
- word = ('P', 'A', 'R', 'T', 'I', 'C', 'I', 'P', 'A', 'T', 'E', ' ',
- 'I', 'N', ' ', 'P', 'A', 'R', 'A', 'C', 'H', 'U', 'T', 'E')
- expected_table = [-1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0,
- 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0]
- assert expected_table == kmp_table(word)
- x = X(0)
- y = Y(0)
- z = Z(0)
- h = H(0)
- word = (x, y, y, x, z)
- expected_table = [-1, 0, 0, 0, 1]
- assert expected_table == kmp_table(word)
- word = (x, x, y, h, z)
- expected_table = [-1, 0, 1, 0, 0]
- assert expected_table == kmp_table(word)
- def test_find_subcircuit():
- x = X(0)
- y = Y(0)
- z = Z(0)
- h = H(0)
- x1 = X(1)
- y1 = Y(1)
- i0 = Symbol('i0')
- x_i0 = X(i0)
- y_i0 = Y(i0)
- z_i0 = Z(i0)
- h_i0 = H(i0)
- circuit = (x, y, z)
- assert find_subcircuit(circuit, (x,)) == 0
- assert find_subcircuit(circuit, (x1,)) == -1
- assert find_subcircuit(circuit, (y,)) == 1
- assert find_subcircuit(circuit, (h,)) == -1
- assert find_subcircuit(circuit, Mul(x, h)) == -1
- assert find_subcircuit(circuit, Mul(x, y, z)) == 0
- assert find_subcircuit(circuit, Mul(y, z)) == 1
- assert find_subcircuit(Mul(*circuit), (x, y, z, h)) == -1
- assert find_subcircuit(Mul(*circuit), (z, y, x)) == -1
- assert find_subcircuit(circuit, (x,), start=2, end=1) == -1
- circuit = (x, y, x, y, z)
- assert find_subcircuit(Mul(*circuit), Mul(x, y, z)) == 2
- assert find_subcircuit(circuit, (x,), start=1) == 2
- assert find_subcircuit(circuit, (x, y), start=1, end=2) == -1
- assert find_subcircuit(Mul(*circuit), (x, y), start=1, end=3) == -1
- assert find_subcircuit(circuit, (x, y), start=1, end=4) == 2
- assert find_subcircuit(circuit, (x, y), start=2, end=4) == 2
- circuit = (x, y, z, x1, x, y, z, h, x, y, x1,
- x, y, z, h, y1, h)
- assert find_subcircuit(circuit, (x, y, z, h, y1)) == 11
- circuit = (x, y, x_i0, y_i0, z_i0, z)
- assert find_subcircuit(circuit, (x_i0, y_i0, z_i0)) == 2
- circuit = (x_i0, y_i0, z_i0, x_i0, y_i0, h_i0)
- subcircuit = (x_i0, y_i0, z_i0)
- result = find_subcircuit(circuit, subcircuit)
- assert result == 0
- def test_replace_subcircuit():
- x = X(0)
- y = Y(0)
- z = Z(0)
- h = H(0)
- cnot = CNOT(1, 0)
- cgate_z = CGate((0,), Z(1))
- # Standard cases
- circuit = (z, y, x, x)
- remove = (z, y, x)
- assert replace_subcircuit(circuit, Mul(*remove)) == (x,)
- assert replace_subcircuit(circuit, remove + (x,)) == ()
- assert replace_subcircuit(circuit, remove, pos=1) == circuit
- assert replace_subcircuit(circuit, remove, pos=0) == (x,)
- assert replace_subcircuit(circuit, (x, x), pos=2) == (z, y)
- assert replace_subcircuit(circuit, (h,)) == circuit
- circuit = (x, y, x, y, z)
- remove = (x, y, z)
- assert replace_subcircuit(Mul(*circuit), Mul(*remove)) == (x, y)
- remove = (x, y, x, y)
- assert replace_subcircuit(circuit, remove) == (z,)
- circuit = (x, h, cgate_z, h, cnot)
- remove = (x, h, cgate_z)
- assert replace_subcircuit(circuit, Mul(*remove), pos=-1) == (h, cnot)
- assert replace_subcircuit(circuit, remove, pos=1) == circuit
- remove = (h, h)
- assert replace_subcircuit(circuit, remove) == circuit
- remove = (h, cgate_z, h, cnot)
- assert replace_subcircuit(circuit, remove) == (x,)
- replace = (h, x)
- actual = replace_subcircuit(circuit, remove,
- replace=replace)
- assert actual == (x, h, x)
- circuit = (x, y, h, x, y, z)
- remove = (x, y)
- replace = (cnot, cgate_z)
- actual = replace_subcircuit(circuit, remove,
- replace=Mul(*replace))
- assert actual == (cnot, cgate_z, h, x, y, z)
- actual = replace_subcircuit(circuit, remove,
- replace=replace, pos=1)
- assert actual == (x, y, h, cnot, cgate_z, z)
- def test_convert_to_symbolic_indices():
- (x, y, z, h) = create_gate_sequence()
- i0 = Symbol('i0')
- exp_map = {i0: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices((x,))
- assert actual == (X(i0),)
- assert act_map == exp_map
- expected = (X(i0), Y(i0), Z(i0), H(i0))
- exp_map = {i0: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h))
- assert actual == expected
- assert exp_map == act_map
- (x1, y1, z1, h1) = create_gate_sequence(1)
- i1 = Symbol('i1')
- expected = (X(i0), Y(i0), Z(i0), H(i0))
- exp_map = {i0: Integer(1)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, y1, z1, h1))
- assert actual == expected
- assert act_map == exp_map
- expected = (X(i0), Y(i0), Z(i0), H(i0), X(i1), Y(i1), Z(i1), H(i1))
- exp_map = {i0: Integer(0), i1: Integer(1)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h,
- x1, y1, z1, h1))
- assert actual == expected
- assert act_map == exp_map
- exp_map = {i0: Integer(1), i1: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x1, y1,
- z1, h1, x, y, z, h))
- assert actual == expected
- assert act_map == exp_map
- expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1), H(i0), H(i1))
- exp_map = {i0: Integer(0), i1: Integer(1)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x, x1,
- y, y1, z, z1, h, h1))
- assert actual == expected
- assert act_map == exp_map
- exp_map = {i0: Integer(1), i1: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, x, y1, y,
- z1, z, h1, h))
- assert actual == expected
- assert act_map == exp_map
- cnot_10 = CNOT(1, 0)
- cnot_01 = CNOT(0, 1)
- cgate_z_10 = CGate(1, Z(0))
- cgate_z_01 = CGate(0, Z(1))
- expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1),
- H(i0), H(i1), CNOT(i1, i0), CNOT(i0, i1),
- CGate(i1, Z(i0)), CGate(i0, Z(i1)))
- exp_map = {i0: Integer(0), i1: Integer(1)}
- args = (x, x1, y, y1, z, z1, h, h1, cnot_10, cnot_01,
- cgate_z_10, cgate_z_01)
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- args = (x1, x, y1, y, z1, z, h1, h, cnot_10, cnot_01,
- cgate_z_10, cgate_z_01)
- expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1),
- H(i0), H(i1), CNOT(i0, i1), CNOT(i1, i0),
- CGate(i0, Z(i1)), CGate(i1, Z(i0)))
- exp_map = {i0: Integer(1), i1: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- args = (cnot_10, h, cgate_z_01, h)
- expected = (CNOT(i0, i1), H(i1), CGate(i1, Z(i0)), H(i1))
- exp_map = {i0: Integer(1), i1: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- args = (cnot_01, h1, cgate_z_10, h1)
- exp_map = {i0: Integer(0), i1: Integer(1)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- args = (cnot_10, h1, cgate_z_01, h1)
- expected = (CNOT(i0, i1), H(i0), CGate(i1, Z(i0)), H(i0))
- exp_map = {i0: Integer(1), i1: Integer(0)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- i2 = Symbol('i2')
- ccgate_z = CGate(0, CGate(1, Z(2)))
- ccgate_x = CGate(1, CGate(2, X(0)))
- args = (ccgate_z, ccgate_x)
- expected = (CGate(i0, CGate(i1, Z(i2))), CGate(i1, CGate(i2, X(i0))))
- exp_map = {i0: Integer(0), i1: Integer(1), i2: Integer(2)}
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- ndx_map = {i0: Integer(0)}
- index_gen = numbered_symbols(prefix='i', start=1)
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args,
- qubit_map=ndx_map,
- start=i0,
- gen=index_gen)
- assert actual == expected
- assert act_map == exp_map
- i3 = Symbol('i3')
- cgate_x0_c321 = CGate((3, 2, 1), X(0))
- exp_map = {i0: Integer(3), i1: Integer(2),
- i2: Integer(1), i3: Integer(0)}
- expected = (CGate((i0, i1, i2), X(i3)),)
- args = (cgate_x0_c321,)
- actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
- assert actual == expected
- assert act_map == exp_map
- def test_convert_to_real_indices():
- i0 = Symbol('i0')
- i1 = Symbol('i1')
- (x, y, z, h) = create_gate_sequence()
- x_i0 = X(i0)
- y_i0 = Y(i0)
- z_i0 = Z(i0)
- qubit_map = {i0: 0}
- args = (z_i0, y_i0, x_i0)
- expected = (z, y, x)
- actual = convert_to_real_indices(args, qubit_map)
- assert actual == expected
- cnot_10 = CNOT(1, 0)
- cnot_01 = CNOT(0, 1)
- cgate_z_10 = CGate(1, Z(0))
- cgate_z_01 = CGate(0, Z(1))
- cnot_i1_i0 = CNOT(i1, i0)
- cnot_i0_i1 = CNOT(i0, i1)
- cgate_z_i1_i0 = CGate(i1, Z(i0))
- qubit_map = {i0: 0, i1: 1}
- args = (cnot_i1_i0,)
- expected = (cnot_10,)
- actual = convert_to_real_indices(args, qubit_map)
- assert actual == expected
- args = (cgate_z_i1_i0,)
- expected = (cgate_z_10,)
- actual = convert_to_real_indices(args, qubit_map)
- assert actual == expected
- args = (cnot_i0_i1,)
- expected = (cnot_01,)
- actual = convert_to_real_indices(args, qubit_map)
- assert actual == expected
- qubit_map = {i0: 1, i1: 0}
- args = (cgate_z_i1_i0,)
- expected = (cgate_z_01,)
- actual = convert_to_real_indices(args, qubit_map)
- assert actual == expected
- i2 = Symbol('i2')
- ccgate_z = CGate(i0, CGate(i1, Z(i2)))
- ccgate_x = CGate(i1, CGate(i2, X(i0)))
- qubit_map = {i0: 0, i1: 1, i2: 2}
- args = (ccgate_z, ccgate_x)
- expected = (CGate(0, CGate(1, Z(2))), CGate(1, CGate(2, X(0))))
- actual = convert_to_real_indices(Mul(*args), qubit_map)
- assert actual == expected
- qubit_map = {i0: 1, i2: 0, i1: 2}
- args = (ccgate_x, ccgate_z)
- expected = (CGate(2, CGate(0, X(1))), CGate(1, CGate(2, Z(0))))
- actual = convert_to_real_indices(args, qubit_map)
- assert actual == expected
- @slow
- def test_random_reduce():
- x = X(0)
- y = Y(0)
- z = Z(0)
- h = H(0)
- cnot = CNOT(1, 0)
- cgate_z = CGate((0,), Z(1))
- gate_list = [x, y, z]
- ids = list(bfs_identity_search(gate_list, 1, max_depth=4))
- circuit = (x, y, h, z, cnot)
- assert random_reduce(circuit, []) == circuit
- assert random_reduce(circuit, ids) == circuit
- seq = [2, 11, 9, 3, 5]
- circuit = (x, y, z, x, y, h)
- assert random_reduce(circuit, ids, seed=seq) == (x, y, h)
- circuit = (x, x, y, y, z, z)
- assert random_reduce(circuit, ids, seed=seq) == (x, x, y, y)
- seq = [14, 13, 0]
- assert random_reduce(circuit, ids, seed=seq) == (y, y, z, z)
- gate_list = [x, y, z, h, cnot, cgate_z]
- ids = list(bfs_identity_search(gate_list, 2, max_depth=4))
- seq = [25]
- circuit = (x, y, z, y, h, y, h, cgate_z, h, cnot)
- expected = (x, y, z, cgate_z, h, cnot)
- assert random_reduce(circuit, ids, seed=seq) == expected
- circuit = Mul(*circuit)
- assert random_reduce(circuit, ids, seed=seq) == expected
- @slow
- def test_random_insert():
- x = X(0)
- y = Y(0)
- z = Z(0)
- h = H(0)
- cnot = CNOT(1, 0)
- cgate_z = CGate((0,), Z(1))
- choices = [(x, x)]
- circuit = (y, y)
- loc, choice = 0, 0
- actual = random_insert(circuit, choices, seed=[loc, choice])
- assert actual == (x, x, y, y)
- circuit = (x, y, z, h)
- choices = [(h, h), (x, y, z)]
- expected = (x, x, y, z, y, z, h)
- loc, choice = 1, 1
- actual = random_insert(circuit, choices, seed=[loc, choice])
- assert actual == expected
- gate_list = [x, y, z, h, cnot, cgate_z]
- ids = list(bfs_identity_search(gate_list, 2, max_depth=4))
- eq_ids = flatten_ids(ids)
- circuit = (x, y, h, cnot, cgate_z)
- expected = (x, z, x, z, x, y, h, cnot, cgate_z)
- loc, choice = 1, 30
- actual = random_insert(circuit, eq_ids, seed=[loc, choice])
- assert actual == expected
- circuit = Mul(*circuit)
- actual = random_insert(circuit, eq_ids, seed=[loc, choice])
- assert actual == expected
|