1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- from math import prod
- from sympy.core.numbers import Rational
- from sympy.functions.elementary.exponential import exp
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.physics.quantum import Dagger, Commutator, qapply
- from sympy.physics.quantum.boson import BosonOp
- from sympy.physics.quantum.boson import (
- BosonFockKet, BosonFockBra, BosonCoherentKet, BosonCoherentBra)
- def test_bosonoperator():
- a = BosonOp('a')
- b = BosonOp('b')
- assert isinstance(a, BosonOp)
- assert isinstance(Dagger(a), BosonOp)
- assert a.is_annihilation
- assert not Dagger(a).is_annihilation
- assert BosonOp("a") == BosonOp("a", True)
- assert BosonOp("a") != BosonOp("c")
- assert BosonOp("a", True) != BosonOp("a", False)
- assert Commutator(a, Dagger(a)).doit() == 1
- assert Commutator(a, Dagger(b)).doit() == a * Dagger(b) - Dagger(b) * a
- assert Dagger(exp(a)) == exp(Dagger(a))
- def test_boson_states():
- a = BosonOp("a")
- # Fock states
- n = 3
- assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0
- assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1
- assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \
- == sqrt(prod(range(1, n+1)))
- # Coherent states
- alpha1, alpha2 = 1.2, 4.3
- assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1
- assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1
- assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() -
- exp((alpha1 - alpha2) ** 2 * Rational(-1, 2))) < 1e-12
- assert qapply(a * BosonCoherentKet(alpha1)) == \
- alpha1 * BosonCoherentKet(alpha1)
|