123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- from sympy.core.numbers import comp, Rational
- from sympy.physics.optics.utils import (refraction_angle, fresnel_coefficients,
- deviation, brewster_angle, critical_angle, lens_makers_formula,
- mirror_formula, lens_formula, hyperfocal_distance,
- transverse_magnification)
- from sympy.physics.optics.medium import Medium
- from sympy.physics.units import e0
- from sympy.core.numbers import oo
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.matrices.dense import Matrix
- from sympy.geometry.point import Point3D
- from sympy.geometry.line import Ray3D
- from sympy.geometry.plane import Plane
- from sympy.testing.pytest import raises
- ae = lambda a, b, n: comp(a, b, 10**-n)
- def test_refraction_angle():
- n1, n2 = symbols('n1, n2')
- m1 = Medium('m1')
- m2 = Medium('m2')
- r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
- i = Matrix([1, 1, 1])
- n = Matrix([0, 0, 1])
- normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
- P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
- assert refraction_angle(r1, 1, 1, n) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle(i, 1, 1, plane=P) == Matrix([
- [ 1],
- [ 1],
- [-1]])
- assert refraction_angle(r1, 1, 1, plane=P) == \
- Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
- assert refraction_angle(r1, m1, 1.33, plane=P) == \
- Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
- assert refraction_angle(r1, 1, m2, plane=P) == \
- Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
- assert refraction_angle(r1, n1, n2, plane=P) == \
- Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
- assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR
- assert refraction_angle(r1, 1, 1, normal_ray) == \
- Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
- assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
- assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
- raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
- raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
- raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
- raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))
- def test_fresnel_coefficients():
- assert all(ae(i, j, 5) for i, j in zip(
- fresnel_coefficients(0.5, 1, 1.33),
- [0.11163, -0.17138, 0.83581, 0.82862]))
- assert all(ae(i, j, 5) for i, j in zip(
- fresnel_coefficients(0.5, 1.33, 1),
- [-0.07726, 0.20482, 1.22724, 1.20482]))
- m1 = Medium('m1')
- m2 = Medium('m2', n=2)
- assert all(ae(i, j, 5) for i, j in zip(
- fresnel_coefficients(0.3, m1, m2),
- [0.31784, -0.34865, 0.65892, 0.65135]))
- ans = [[-0.23563, -0.97184], [0.81648, -0.57738]]
- got = fresnel_coefficients(0.6, m2, m1)
- for i, j in zip(got, ans):
- for a, b in zip(i.as_real_imag(), j):
- assert ae(a, b, 5)
- def test_deviation():
- n1, n2 = symbols('n1, n2')
- r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
- n = Matrix([0, 0, 1])
- i = Matrix([-1, -1, -1])
- normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
- P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
- assert deviation(r1, 1, 1, normal=n) == 0
- assert deviation(r1, 1, 1, plane=P) == 0
- assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
- assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
- assert deviation(r1, 1.33, 1, plane=P) is None # TIR
- assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
- assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
- assert ae(deviation(0.5, 1, 2), -0.25793, 5)
- assert ae(deviation(0.5, 2, 1), 0.78293, 5)
- def test_brewster_angle():
- m1 = Medium('m1', n=1)
- m2 = Medium('m2', n=1.33)
- assert ae(brewster_angle(m1, m2), 0.93, 2)
- m1 = Medium('m1', permittivity=e0, n=1)
- m2 = Medium('m2', permittivity=e0, n=1.33)
- assert ae(brewster_angle(m1, m2), 0.93, 2)
- assert ae(brewster_angle(1, 1.33), 0.93, 2)
- def test_critical_angle():
- m1 = Medium('m1', n=1)
- m2 = Medium('m2', n=1.33)
- assert ae(critical_angle(m2, m1), 0.85, 2)
- def test_lens_makers_formula():
- n1, n2 = symbols('n1, n2')
- m1 = Medium('m1', permittivity=e0, n=1)
- m2 = Medium('m2', permittivity=e0, n=1.33)
- assert lens_makers_formula(n1, n2, 10, -10) == 5.0*n2/(n1 - n2)
- assert ae(lens_makers_formula(m1, m2, 10, -10), -20.15, 2)
- assert ae(lens_makers_formula(1.33, 1, 10, -10), 15.15, 2)
- def test_mirror_formula():
- u, v, f = symbols('u, v, f')
- assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
- assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
- assert mirror_formula(u=u, v=v) == u*v/(u + v)
- assert mirror_formula(u=oo, v=v) == v
- assert mirror_formula(u=oo, v=oo) is oo
- assert mirror_formula(focal_length=oo, u=u) == -u
- assert mirror_formula(u=u, v=oo) == u
- assert mirror_formula(focal_length=oo, v=oo) is oo
- assert mirror_formula(focal_length=f, v=oo) == f
- assert mirror_formula(focal_length=oo, v=v) == -v
- assert mirror_formula(focal_length=oo, u=oo) is oo
- assert mirror_formula(focal_length=f, u=oo) == f
- assert mirror_formula(focal_length=oo, u=u) == -u
- raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v))
- def test_lens_formula():
- u, v, f = symbols('u, v, f')
- assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
- assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
- assert lens_formula(u=u, v=v) == u*v/(u - v)
- assert lens_formula(u=oo, v=v) == v
- assert lens_formula(u=oo, v=oo) is oo
- assert lens_formula(focal_length=oo, u=u) == u
- assert lens_formula(u=u, v=oo) == -u
- assert lens_formula(focal_length=oo, v=oo) is -oo
- assert lens_formula(focal_length=oo, v=v) == v
- assert lens_formula(focal_length=f, v=oo) == -f
- assert lens_formula(focal_length=oo, u=oo) is oo
- assert lens_formula(focal_length=oo, u=u) == u
- assert lens_formula(focal_length=f, u=oo) == f
- raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v))
- def test_hyperfocal_distance():
- f, N, c = symbols('f, N, c')
- assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
- assert ae(hyperfocal_distance(f=0.5, N=8, c=0.0033), 9.47, 2)
- def test_transverse_magnification():
- si, so = symbols('si, so')
- assert transverse_magnification(si, so) == -si/so
- assert transverse_magnification(30, 15) == -2
- def test_lens_makers_formula_thick_lens():
- n1, n2 = symbols('n1, n2')
- m1 = Medium('m1', permittivity=e0, n=1)
- m2 = Medium('m2', permittivity=e0, n=1.33)
- assert ae(lens_makers_formula(m1, m2, 10, -10, d=1), -19.82, 2)
- assert lens_makers_formula(n1, n2, 1, -1, d=0.1) == n2/((2.0 - (0.1*n1 - 0.1*n2)/n1)*(n1 - n2))
- def test_lens_makers_formula_plano_lens():
- n1, n2 = symbols('n1, n2')
- m1 = Medium('m1', permittivity=e0, n=1)
- m2 = Medium('m2', permittivity=e0, n=1.33)
- assert ae(lens_makers_formula(m1, m2, 10, oo), -40.30, 2)
- assert lens_makers_formula(n1, n2, 10, oo) == 10.0*n2/(n1 - n2)
|