123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036 |
- from typing import Type
- from sympy.core.add import Add
- from sympy.core.basic import Basic
- from sympy.core.containers import Tuple
- from sympy.core.evalf import EvalfMixin
- from sympy.core.expr import Expr
- from sympy.core.function import expand
- from sympy.core.logic import fuzzy_and
- from sympy.core.mul import Mul
- from sympy.core.power import Pow
- from sympy.core.singleton import S
- from sympy.core.symbol import Dummy, Symbol
- from sympy.core.sympify import sympify, _sympify
- from sympy.matrices import ImmutableMatrix, eye
- from sympy.matrices.expressions import MatMul, MatAdd
- from sympy.polys import Poly, rootof
- from sympy.polys.polyroots import roots
- from sympy.polys.polytools import (cancel, degree)
- from sympy.series import limit
- from mpmath.libmp.libmpf import prec_to_dps
- __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel',
- 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix', 'bilinear', 'backward_diff']
- def _roots(poly, var):
- """ like roots, but works on higher-order polynomials. """
- r = roots(poly, var, multiple=True)
- n = degree(poly)
- if len(r) != n:
- r = [rootof(poly, var, k) for k in range(n)]
- return r
- def bilinear(tf, sample_per):
- """
- Returns falling coefficients of H(z) from numerator and denominator.
- Where H(z) is the corresponding discretized transfer function,
- discretized with the bilinear transform method.
- H(z) is obtained from the continuous transfer function H(s)
- by substituting s(z) = 2/T * (z-1)/(z+1) into H(s), where T is the
- sample period.
- Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned
- as [a, b], [c, d].
- Examples
- ========
- >>> from sympy.physics.control.lti import TransferFunction, bilinear
- >>> from sympy.abc import s, L, R, T
- >>> tf = TransferFunction(1, s*L + R, s)
- >>> numZ, denZ = bilinear(tf, T)
- >>> numZ
- [T, T]
- >>> denZ
- [2*L + R*T, -2*L + R*T]
- """
- T = sample_per # and sample period T
- s = tf.var
- z = s # dummy discrete variable z
- np = tf.num.as_poly(s).all_coeffs()
- dp = tf.den.as_poly(s).all_coeffs()
- # The next line results from multiplying H(z) with (z+1)^N/(z+1)^N
- N = max(len(np), len(dp)) - 1
- num = Add(*[ T**(N-i)*2**i*c*(z-1)**i*(z+1)**(N-i) for c, i in zip(np[::-1], range(len(np))) ])
- den = Add(*[ T**(N-i)*2**i*c*(z-1)**i*(z+1)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ])
- num_coefs = num.as_poly(z).all_coeffs()
- den_coefs = den.as_poly(z).all_coeffs()
- return num_coefs, den_coefs
- def backward_diff(tf, sample_per):
- """
- Returns falling coefficients of H(z) from numerator and denominator.
- Where H(z) is the corresponding discretized transfer function,
- discretized with the backward difference transform method.
- H(z) is obtained from the continuous transfer function H(s)
- by substituting s(z) = (z-1)/(T*z) into H(s), where T is the
- sample period.
- Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned
- as [a, b], [c, d].
- Examples
- ========
- >>> from sympy.physics.control.lti import TransferFunction, backward_diff
- >>> from sympy.abc import s, L, R, T
- >>> tf = TransferFunction(1, s*L + R, s)
- >>> numZ, denZ = backward_diff(tf, T)
- >>> numZ
- [T, 0]
- >>> denZ
- [L + R*T, -L]
- """
- T = sample_per # and sample period T
- s = tf.var
- z = s # dummy discrete variable z
- np = tf.num.as_poly(s).all_coeffs()
- dp = tf.den.as_poly(s).all_coeffs()
- # The next line results from multiplying H(z) with z^N/z^N
- N = max(len(np), len(dp)) - 1
- num = Add(*[ T**(N-i)*c*(z-1)**i*(z)**(N-i) for c, i in zip(np[::-1], range(len(np))) ])
- den = Add(*[ T**(N-i)*c*(z-1)**i*(z)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ])
- num_coefs = num.as_poly(z).all_coeffs()
- den_coefs = den.as_poly(z).all_coeffs()
- return num_coefs, den_coefs
- class LinearTimeInvariant(Basic, EvalfMixin):
- """A common class for all the Linear Time-Invariant Dynamical Systems."""
- _clstype: Type
- # Users should not directly interact with this class.
- def __new__(cls, *system, **kwargs):
- if cls is LinearTimeInvariant:
- raise NotImplementedError('The LTICommon class is not meant to be used directly.')
- return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs)
- @classmethod
- def _check_args(cls, args):
- if not args:
- raise ValueError("Atleast 1 argument must be passed.")
- if not all(isinstance(arg, cls._clstype) for arg in args):
- raise TypeError(f"All arguments must be of type {cls._clstype}.")
- var_set = {arg.var for arg in args}
- if len(var_set) != 1:
- raise ValueError("All transfer functions should use the same complex variable"
- f" of the Laplace transform. {len(var_set)} different values found.")
- @property
- def is_SISO(self):
- """Returns `True` if the passed LTI system is SISO else returns False."""
- return self._is_SISO
- class SISOLinearTimeInvariant(LinearTimeInvariant):
- """A common class for all the SISO Linear Time-Invariant Dynamical Systems."""
- # Users should not directly interact with this class.
- _is_SISO = True
- class MIMOLinearTimeInvariant(LinearTimeInvariant):
- """A common class for all the MIMO Linear Time-Invariant Dynamical Systems."""
- # Users should not directly interact with this class.
- _is_SISO = False
- SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant
- MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant
- def _check_other_SISO(func):
- def wrapper(*args, **kwargs):
- if not isinstance(args[-1], SISOLinearTimeInvariant):
- return NotImplemented
- else:
- return func(*args, **kwargs)
- return wrapper
- def _check_other_MIMO(func):
- def wrapper(*args, **kwargs):
- if not isinstance(args[-1], MIMOLinearTimeInvariant):
- return NotImplemented
- else:
- return func(*args, **kwargs)
- return wrapper
- class TransferFunction(SISOLinearTimeInvariant):
- r"""
- A class for representing LTI (Linear, time-invariant) systems that can be strictly described
- by ratio of polynomials in the Laplace transform complex variable. The arguments
- are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and
- denominator polynomials of the ``TransferFunction`` respectively, and the third argument is
- a complex variable of the Laplace transform used by these polynomials of the transfer function.
- ``num`` and ``den`` can be either polynomials or numbers, whereas ``var``
- has to be a :py:class:`~.Symbol`.
- Explanation
- ===========
- Generally, a dynamical system representing a physical model can be described in terms of Linear
- Ordinary Differential Equations like -
- $\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y=
- a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$
- Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative
- (not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater
- than $n$.
- It is not feasible to analyse the properties of such systems in their native form therefore, we use
- mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform
- of both the sides in the equation (at zero initial conditions), we get -
- $\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]=
- \mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$
- Using the linearity property of Laplace transform and also considering zero initial conditions
- (i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation
- above gets translated to -
- $\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]=
- a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$
- Now, applying Derivative property of Laplace transform,
- $\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]=
- a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$
- Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important
- and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above
- cannot be reached.
- Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio
- $\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer
- function.
- The numerator of the transfer function is, therefore, the Laplace transform of the output signal
- (The signals are represented as functions of time) and similarly, the denominator
- of the transfer function is the Laplace transform of the input signal. It is also a convention
- to denote the input and output signal's Laplace transform with capital alphabets like shown below.
- $H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$
- $s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the
- equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace
- transform of the system's impulse response. Transfer function, $H$, is represented as a rational
- function in $s$ like,
- $H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$
- Parameters
- ==========
- num : Expr, Number
- The numerator polynomial of the transfer function.
- den : Expr, Number
- The denominator polynomial of the transfer function.
- var : Symbol
- Complex variable of the Laplace transform used by the
- polynomials of the transfer function.
- Raises
- ======
- TypeError
- When ``var`` is not a Symbol or when ``num`` or ``den`` is not a
- number or a polynomial.
- ValueError
- When ``den`` is zero.
- Examples
- ========
- >>> from sympy.abc import s, p, a
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction(s + a, s**2 + s + 1, s)
- >>> tf1
- TransferFunction(a + s, s**2 + s + 1, s)
- >>> tf1.num
- a + s
- >>> tf1.den
- s**2 + s + 1
- >>> tf1.var
- s
- >>> tf1.args
- (a + s, s**2 + s + 1, s)
- Any complex variable can be used for ``var``.
- >>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p)
- >>> tf2
- TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
- >>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
- >>> tf3
- TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p)
- To negate a transfer function the ``-`` operator can be prepended:
- >>> tf4 = TransferFunction(-a + s, p**2 + s, p)
- >>> -tf4
- TransferFunction(a - s, p**2 + s, p)
- >>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s)
- >>> -tf5
- TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s)
- You can use a float or an integer (or other constants) as numerator and denominator:
- >>> tf6 = TransferFunction(1/2, 4, s)
- >>> tf6.num
- 0.500000000000000
- >>> tf6.den
- 4
- >>> tf6.var
- s
- >>> tf6.args
- (0.5, 4, s)
- You can take the integer power of a transfer function using the ``**`` operator:
- >>> tf7 = TransferFunction(s + a, s - a, s)
- >>> tf7**3
- TransferFunction((a + s)**3, (-a + s)**3, s)
- >>> tf7**0
- TransferFunction(1, 1, s)
- >>> tf8 = TransferFunction(p + 4, p - 3, p)
- >>> tf8**-1
- TransferFunction(p - 3, p + 4, p)
- Addition, subtraction, and multiplication of transfer functions can form
- unevaluated ``Series`` or ``Parallel`` objects.
- >>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s)
- >>> tf10 = TransferFunction(s - p, s + 3, s)
- >>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s)
- >>> tf12 = TransferFunction(1 - s, s**2 + 4, s)
- >>> tf9 + tf10
- Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
- >>> tf10 - tf11
- Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s))
- >>> tf9 * tf10
- Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
- >>> tf10 - (tf9 + tf12)
- Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s))
- >>> tf10 - (tf9 * tf12)
- Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)))
- >>> tf11 * tf10 * tf9
- Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s))
- >>> tf9 * tf11 + tf10 * tf12
- Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s)))
- >>> (tf9 + tf12) * (tf10 + tf11)
- Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)))
- These unevaluated ``Series`` or ``Parallel`` objects can convert into the
- resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``.
- >>> ((tf9 + tf10) * tf12).doit()
- TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
- >>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction)
- TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
- See Also
- ========
- Feedback, Series, Parallel
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Transfer_function
- .. [2] https://en.wikipedia.org/wiki/Laplace_transform
- """
- def __new__(cls, num, den, var):
- num, den = _sympify(num), _sympify(den)
- if not isinstance(var, Symbol):
- raise TypeError("Variable input must be a Symbol.")
- if den == 0:
- raise ValueError("TransferFunction cannot have a zero denominator.")
- if (((isinstance(num, Expr) and num.has(Symbol)) or num.is_number) and
- ((isinstance(den, Expr) and den.has(Symbol)) or den.is_number)):
- obj = super(TransferFunction, cls).__new__(cls, num, den, var)
- obj._num = num
- obj._den = den
- obj._var = var
- return obj
- else:
- raise TypeError("Unsupported type for numerator or denominator of TransferFunction.")
- @classmethod
- def from_rational_expression(cls, expr, var=None):
- r"""
- Creates a new ``TransferFunction`` efficiently from a rational expression.
- Parameters
- ==========
- expr : Expr, Number
- The rational expression representing the ``TransferFunction``.
- var : Symbol, optional
- Complex variable of the Laplace transform used by the
- polynomials of the transfer function.
- Raises
- ======
- ValueError
- When ``expr`` is of type ``Number`` and optional parameter ``var``
- is not passed.
- When ``expr`` has more than one variables and an optional parameter
- ``var`` is not passed.
- ZeroDivisionError
- When denominator of ``expr`` is zero or it has ``ComplexInfinity``
- in its numerator.
- Examples
- ========
- >>> from sympy.abc import s, p, a
- >>> from sympy.physics.control.lti import TransferFunction
- >>> expr1 = (s + 5)/(3*s**2 + 2*s + 1)
- >>> tf1 = TransferFunction.from_rational_expression(expr1)
- >>> tf1
- TransferFunction(s + 5, 3*s**2 + 2*s + 1, s)
- >>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables
- >>> tf2 = TransferFunction.from_rational_expression(expr2, p)
- >>> tf2
- TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
- In case of conflict between two or more variables in a expression, SymPy will
- raise a ``ValueError``, if ``var`` is not passed by the user.
- >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1))
- Traceback (most recent call last):
- ...
- ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually.
- This can be corrected by specifying the ``var`` parameter manually.
- >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s)
- >>> tf
- TransferFunction(a*s + a, s**2 + s + 1, s)
- ``var`` also need to be specified when ``expr`` is a ``Number``
- >>> tf3 = TransferFunction.from_rational_expression(10, s)
- >>> tf3
- TransferFunction(10, 1, s)
- """
- expr = _sympify(expr)
- if var is None:
- _free_symbols = expr.free_symbols
- _len_free_symbols = len(_free_symbols)
- if _len_free_symbols == 1:
- var = list(_free_symbols)[0]
- elif _len_free_symbols == 0:
- raise ValueError("Positional argument `var` not found in the TransferFunction defined. Specify it manually.")
- else:
- raise ValueError("Conflicting values found for positional argument `var` ({}). Specify it manually.".format(_free_symbols))
- _num, _den = expr.as_numer_denom()
- if _den == 0 or _num.has(S.ComplexInfinity):
- raise ZeroDivisionError("TransferFunction cannot have a zero denominator.")
- return cls(_num, _den, var)
- @property
- def num(self):
- """
- Returns the numerator polynomial of the transfer function.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction
- >>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s)
- >>> G1.num
- p*s + s**2 + 3
- >>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p)
- >>> G2.num
- (p - 3)*(p + 5)
- """
- return self._num
- @property
- def den(self):
- """
- Returns the denominator polynomial of the transfer function.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction
- >>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s)
- >>> G1.den
- p**3 - 2*p + 4
- >>> G2 = TransferFunction(3, 4, s)
- >>> G2.den
- 4
- """
- return self._den
- @property
- def var(self):
- """
- Returns the complex variable of the Laplace transform used by the polynomials of
- the transfer function.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction
- >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
- >>> G1.var
- p
- >>> G2 = TransferFunction(0, s - 5, s)
- >>> G2.var
- s
- """
- return self._var
- def _eval_subs(self, old, new):
- arg_num = self.num.subs(old, new)
- arg_den = self.den.subs(old, new)
- argnew = TransferFunction(arg_num, arg_den, self.var)
- return self if old == self.var else argnew
- def _eval_evalf(self, prec):
- return TransferFunction(
- self.num._eval_evalf(prec),
- self.den._eval_evalf(prec),
- self.var)
- def _eval_simplify(self, **kwargs):
- tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom()
- num_, den_ = tf[0], tf[1]
- return TransferFunction(num_, den_, self.var)
- def expand(self):
- """
- Returns the transfer function with numerator and denominator
- in expanded form.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction
- >>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s)
- >>> G1.expand()
- TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s)
- >>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p)
- >>> G2.expand()
- TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p)
- """
- return TransferFunction(expand(self.num), expand(self.den), self.var)
- def dc_gain(self):
- """
- Computes the gain of the response as the frequency approaches zero.
- The DC gain is infinite for systems with pure integrators.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction(s + 3, s**2 - 9, s)
- >>> tf1.dc_gain()
- -1/3
- >>> tf2 = TransferFunction(p**2, p - 3 + p**3, p)
- >>> tf2.dc_gain()
- 0
- >>> tf3 = TransferFunction(a*p**2 - b, s + b, s)
- >>> tf3.dc_gain()
- (a*p**2 - b)/b
- >>> tf4 = TransferFunction(1, s, s)
- >>> tf4.dc_gain()
- oo
- """
- m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False)
- return limit(m, self.var, 0)
- def poles(self):
- """
- Returns the poles of a transfer function.
- Examples
- ========
- >>> from sympy.abc import s, p, a
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
- >>> tf1.poles()
- [-5, 1]
- >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
- >>> tf2.poles()
- [I, I, -I, -I]
- >>> tf3 = TransferFunction(s**2, a*s + p, s)
- >>> tf3.poles()
- [-p/a]
- """
- return _roots(Poly(self.den, self.var), self.var)
- def zeros(self):
- """
- Returns the zeros of a transfer function.
- Examples
- ========
- >>> from sympy.abc import s, p, a
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
- >>> tf1.zeros()
- [-3, 1]
- >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
- >>> tf2.zeros()
- [1, 1]
- >>> tf3 = TransferFunction(s**2, a*s + p, s)
- >>> tf3.zeros()
- [0, 0]
- """
- return _roots(Poly(self.num, self.var), self.var)
- def is_stable(self):
- """
- Returns True if the transfer function is asymptotically stable; else False.
- This would not check the marginal or conditional stability of the system.
- Examples
- ========
- >>> from sympy.abc import s, p, a
- >>> from sympy import symbols
- >>> from sympy.physics.control.lti import TransferFunction
- >>> q, r = symbols('q, r', negative=True)
- >>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s)
- >>> tf1.is_stable()
- True
- >>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s)
- >>> tf2.is_stable()
- False
- >>> tf3 = TransferFunction(4, q*s - r, s)
- >>> tf3.is_stable()
- False
- >>> tf4 = TransferFunction(p + 1, a*p - s**2, p)
- >>> tf4.is_stable() is None # Not enough info about the symbols to determine stability
- True
- """
- return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles())
- def __add__(self, other):
- if isinstance(other, (TransferFunction, Series)):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- return Parallel(self, other)
- elif isinstance(other, Parallel):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- arg_list = list(other.args)
- return Parallel(self, *arg_list)
- else:
- raise ValueError("TransferFunction cannot be added with {}.".
- format(type(other)))
- def __radd__(self, other):
- return self + other
- def __sub__(self, other):
- if isinstance(other, (TransferFunction, Series)):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- return Parallel(self, -other)
- elif isinstance(other, Parallel):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- arg_list = [-i for i in list(other.args)]
- return Parallel(self, *arg_list)
- else:
- raise ValueError("{} cannot be subtracted from a TransferFunction."
- .format(type(other)))
- def __rsub__(self, other):
- return -self + other
- def __mul__(self, other):
- if isinstance(other, (TransferFunction, Parallel)):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- return Series(self, other)
- elif isinstance(other, Series):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- arg_list = list(other.args)
- return Series(self, *arg_list)
- else:
- raise ValueError("TransferFunction cannot be multiplied with {}."
- .format(type(other)))
- __rmul__ = __mul__
- def __truediv__(self, other):
- if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction)
- and isinstance(other.args[1], (Series, TransferFunction))):
- if not self.var == other.var:
- raise ValueError("Both TransferFunction and Parallel should use the"
- " same complex variable of the Laplace transform.")
- if other.args[1] == self:
- # plant and controller with unit feedback.
- return Feedback(self, other.args[0])
- other_arg_list = list(other.args[1].args) if isinstance(other.args[1], Series) else other.args[1]
- if other_arg_list == other.args[1]:
- return Feedback(self, other_arg_list)
- elif self in other_arg_list:
- other_arg_list.remove(self)
- else:
- return Feedback(self, Series(*other_arg_list))
- if len(other_arg_list) == 1:
- return Feedback(self, *other_arg_list)
- else:
- return Feedback(self, Series(*other_arg_list))
- else:
- raise ValueError("TransferFunction cannot be divided by {}.".
- format(type(other)))
- __rtruediv__ = __truediv__
- def __pow__(self, p):
- p = sympify(p)
- if not p.is_Integer:
- raise ValueError("Exponent must be an integer.")
- if p is S.Zero:
- return TransferFunction(1, 1, self.var)
- elif p > 0:
- num_, den_ = self.num**p, self.den**p
- else:
- p = abs(p)
- num_, den_ = self.den**p, self.num**p
- return TransferFunction(num_, den_, self.var)
- def __neg__(self):
- return TransferFunction(-self.num, self.den, self.var)
- @property
- def is_proper(self):
- """
- Returns True if degree of the numerator polynomial is less than
- or equal to degree of the denominator polynomial, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
- >>> tf1.is_proper
- False
- >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p)
- >>> tf2.is_proper
- True
- """
- return degree(self.num, self.var) <= degree(self.den, self.var)
- @property
- def is_strictly_proper(self):
- """
- Returns True if degree of the numerator polynomial is strictly less
- than degree of the denominator polynomial, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf1.is_strictly_proper
- False
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> tf2.is_strictly_proper
- True
- """
- return degree(self.num, self.var) < degree(self.den, self.var)
- @property
- def is_biproper(self):
- """
- Returns True if degree of the numerator polynomial is equal to
- degree of the denominator polynomial, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf1.is_biproper
- True
- >>> tf2 = TransferFunction(p**2, p + a, p)
- >>> tf2.is_biproper
- False
- """
- return degree(self.num, self.var) == degree(self.den, self.var)
- def to_expr(self):
- """
- Converts a ``TransferFunction`` object to SymPy Expr.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction
- >>> from sympy import Expr
- >>> tf1 = TransferFunction(s, a*s**2 + 1, s)
- >>> tf1.to_expr()
- s/(a*s**2 + 1)
- >>> isinstance(_, Expr)
- True
- >>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p)
- >>> tf2.to_expr()
- 1/((b - p)*(3*b + p))
- >>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s)
- >>> tf3.to_expr()
- ((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1)))
- """
- if self.num != 1:
- return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False)
- else:
- return Pow(self.den, -1, evaluate=False)
- def _flatten_args(args, _cls):
- temp_args = []
- for arg in args:
- if isinstance(arg, _cls):
- temp_args.extend(arg.args)
- else:
- temp_args.append(arg)
- return tuple(temp_args)
- def _dummify_args(_arg, var):
- dummy_dict = {}
- dummy_arg_list = []
- for arg in _arg:
- _s = Dummy()
- dummy_dict[_s] = var
- dummy_arg = arg.subs({var: _s})
- dummy_arg_list.append(dummy_arg)
- return dummy_arg_list, dummy_dict
- class Series(SISOLinearTimeInvariant):
- r"""
- A class for representing a series configuration of SISO systems.
- Parameters
- ==========
- args : SISOLinearTimeInvariant
- SISO systems in a series configuration.
- evaluate : Boolean, Keyword
- When passed ``True``, returns the equivalent
- ``Series(*args).doit()``. Set to ``False`` by default.
- Raises
- ======
- ValueError
- When no argument is passed.
- ``var`` attribute is not same for every system.
- TypeError
- Any of the passed ``*args`` has unsupported type
- A combination of SISO and MIMO systems is
- passed. There should be homogeneity in the
- type of systems passed, SISO in this case.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> tf3 = TransferFunction(p**2, p + s, s)
- >>> S1 = Series(tf1, tf2)
- >>> S1
- Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
- >>> S1.var
- s
- >>> S2 = Series(tf2, Parallel(tf3, -tf1))
- >>> S2
- Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s)))
- >>> S2.var
- s
- >>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3))
- >>> S3
- Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s)))
- >>> S3.var
- s
- You can get the resultant transfer function by using ``.doit()`` method:
- >>> S3 = Series(tf1, tf2, -tf3)
- >>> S3.doit()
- TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
- >>> S4 = Series(tf2, Parallel(tf1, -tf3))
- >>> S4.doit()
- TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
- Notes
- =====
- All the transfer functions should use the same complex variable
- ``var`` of the Laplace transform.
- See Also
- ========
- MIMOSeries, Parallel, TransferFunction, Feedback
- """
- def __new__(cls, *args, evaluate=False):
- args = _flatten_args(args, Series)
- cls._check_args(args)
- obj = super().__new__(cls, *args)
- return obj.doit() if evaluate else obj
- @property
- def var(self):
- """
- Returns the complex variable used by all the transfer functions.
- Examples
- ========
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel
- >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
- >>> G2 = TransferFunction(p, 4 - p, p)
- >>> G3 = TransferFunction(0, p**4 - 1, p)
- >>> Series(G1, G2).var
- p
- >>> Series(-G3, Parallel(G1, G2)).var
- p
- """
- return self.args[0].var
- def doit(self, **hints):
- """
- Returns the resultant transfer function obtained after evaluating
- the transfer functions in series configuration.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Series
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> Series(tf2, tf1).doit()
- TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)
- >>> Series(-tf1, -tf2).doit()
- TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s)
- """
- _num_arg = (arg.doit().num for arg in self.args)
- _den_arg = (arg.doit().den for arg in self.args)
- res_num = Mul(*_num_arg, evaluate=True)
- res_den = Mul(*_den_arg, evaluate=True)
- return TransferFunction(res_num, res_den, self.var)
- def _eval_rewrite_as_TransferFunction(self, *args, **kwargs):
- return self.doit()
- @_check_other_SISO
- def __add__(self, other):
- if isinstance(other, Parallel):
- arg_list = list(other.args)
- return Parallel(self, *arg_list)
- return Parallel(self, other)
- __radd__ = __add__
- @_check_other_SISO
- def __sub__(self, other):
- return self + (-other)
- def __rsub__(self, other):
- return -self + other
- @_check_other_SISO
- def __mul__(self, other):
- arg_list = list(self.args)
- return Series(*arg_list, other)
- def __truediv__(self, other):
- if (isinstance(other, Parallel) and len(other.args) == 2
- and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)):
- if not self.var == other.var:
- raise ValueError("All the transfer functions should use the same complex variable "
- "of the Laplace transform.")
- self_arg_list = set(self.args)
- other_arg_list = set(other.args[1].args)
- res = list(self_arg_list ^ other_arg_list)
- if len(res) == 0:
- return Feedback(self, other.args[0])
- elif len(res) == 1:
- return Feedback(self, *res)
- else:
- return Feedback(self, Series(*res))
- else:
- raise ValueError("This transfer function expression is invalid.")
- def __neg__(self):
- return Series(TransferFunction(-1, 1, self.var), self)
- def to_expr(self):
- """Returns the equivalent ``Expr`` object."""
- return Mul(*(arg.to_expr() for arg in self.args), evaluate=False)
- @property
- def is_proper(self):
- """
- Returns True if degree of the numerator polynomial of the resultant transfer
- function is less than or equal to degree of the denominator polynomial of
- the same, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Series
- >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
- >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
- >>> tf3 = TransferFunction(s, s**2 + s + 1, s)
- >>> S1 = Series(-tf2, tf1)
- >>> S1.is_proper
- False
- >>> S2 = Series(tf1, tf2, tf3)
- >>> S2.is_proper
- True
- """
- return self.doit().is_proper
- @property
- def is_strictly_proper(self):
- """
- Returns True if degree of the numerator polynomial of the resultant transfer
- function is strictly less than degree of the denominator polynomial of
- the same, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Series
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s)
- >>> tf3 = TransferFunction(1, s**2 + s + 1, s)
- >>> S1 = Series(tf1, tf2)
- >>> S1.is_strictly_proper
- False
- >>> S2 = Series(tf1, tf2, tf3)
- >>> S2.is_strictly_proper
- True
- """
- return self.doit().is_strictly_proper
- @property
- def is_biproper(self):
- r"""
- Returns True if degree of the numerator polynomial of the resultant transfer
- function is equal to degree of the denominator polynomial of
- the same, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Series
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(p, s**2, s)
- >>> tf3 = TransferFunction(s**2, 1, s)
- >>> S1 = Series(tf1, -tf2)
- >>> S1.is_biproper
- False
- >>> S2 = Series(tf2, tf3)
- >>> S2.is_biproper
- True
- """
- return self.doit().is_biproper
- def _mat_mul_compatible(*args):
- """To check whether shapes are compatible for matrix mul."""
- return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1))
- class MIMOSeries(MIMOLinearTimeInvariant):
- r"""
- A class for representing a series configuration of MIMO systems.
- Parameters
- ==========
- args : MIMOLinearTimeInvariant
- MIMO systems in a series configuration.
- evaluate : Boolean, Keyword
- When passed ``True``, returns the equivalent
- ``MIMOSeries(*args).doit()``. Set to ``False`` by default.
- Raises
- ======
- ValueError
- When no argument is passed.
- ``var`` attribute is not same for every system.
- ``num_outputs`` of the MIMO system is not equal to the
- ``num_inputs`` of its adjacent MIMO system. (Matrix
- multiplication constraint, basically)
- TypeError
- Any of the passed ``*args`` has unsupported type
- A combination of SISO and MIMO systems is
- passed. There should be homogeneity in the
- type of systems passed, MIMO in this case.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix
- >>> from sympy import Matrix, pprint
- >>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input
- >>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs
- >>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs
- >>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s)
- >>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s)
- >>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s)
- >>> MIMOSeries(tfm_c, tfm_b, tfm_a)
- MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),))))
- >>> pprint(_, use_unicode=False) # For Better Visualization
- [5*s] [1 s]
- [---] [5 1 ] [- -]
- [ 1 ] [- ----] [1 1]
- [ ] *[1 2] *[ ]
- [ 5 ] [ 6*s ]{t} [5 1]
- [ - ] [- -]
- [ 1 ]{t} [s 1]{t}
- >>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit()
- TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s))))
- >>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs).
- [ 4 4 ]
- [150*s + 25*s 150*s + 5*s]
- [------------- ------------]
- [ 3 2 ]
- [ 6*s 6*s ]
- [ ]
- [ 3 3 ]
- [ 150*s + 25 150*s + 5 ]
- [ ----------- ---------- ]
- [ 3 2 ]
- [ 6*s 6*s ]{t}
- Notes
- =====
- All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform.
- ``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``.
- See Also
- ========
- Series, MIMOParallel
- """
- def __new__(cls, *args, evaluate=False):
- cls._check_args(args)
- if _mat_mul_compatible(*args):
- obj = super().__new__(cls, *args)
- else:
- raise ValueError("Number of input signals do not match the number"
- " of output signals of adjacent systems for some args.")
- return obj.doit() if evaluate else obj
- @property
- def var(self):
- """
- Returns the complex variable used by all the transfer functions.
- Examples
- ========
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
- >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
- >>> G2 = TransferFunction(p, 4 - p, p)
- >>> G3 = TransferFunction(0, p**4 - 1, p)
- >>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]])
- >>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]])
- >>> MIMOSeries(tfm_2, tfm_1).var
- p
- """
- return self.args[0].var
- @property
- def num_inputs(self):
- """Returns the number of input signals of the series system."""
- return self.args[0].num_inputs
- @property
- def num_outputs(self):
- """Returns the number of output signals of the series system."""
- return self.args[-1].num_outputs
- @property
- def shape(self):
- """Returns the shape of the equivalent MIMO system."""
- return self.num_outputs, self.num_inputs
- def doit(self, cancel=False, **kwargs):
- """
- Returns the resultant transfer function matrix obtained after evaluating
- the MIMO systems arranged in a series configuration.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]])
- >>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]])
- >>> MIMOSeries(tfm2, tfm1).doit()
- TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s))))
- """
- _arg = (arg.doit()._expr_mat for arg in reversed(self.args))
- if cancel:
- res = MatMul(*_arg, evaluate=True)
- return TransferFunctionMatrix.from_Matrix(res, self.var)
- _dummy_args, _dummy_dict = _dummify_args(_arg, self.var)
- res = MatMul(*_dummy_args, evaluate=True)
- temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var)
- return temp_tfm.subs(_dummy_dict)
- def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs):
- return self.doit()
- @_check_other_MIMO
- def __add__(self, other):
- if isinstance(other, MIMOParallel):
- arg_list = list(other.args)
- return MIMOParallel(self, *arg_list)
- return MIMOParallel(self, other)
- __radd__ = __add__
- @_check_other_MIMO
- def __sub__(self, other):
- return self + (-other)
- def __rsub__(self, other):
- return -self + other
- @_check_other_MIMO
- def __mul__(self, other):
- if isinstance(other, MIMOSeries):
- self_arg_list = list(self.args)
- other_arg_list = list(other.args)
- return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A)
- arg_list = list(self.args)
- return MIMOSeries(other, *arg_list)
- def __neg__(self):
- arg_list = list(self.args)
- arg_list[0] = -arg_list[0]
- return MIMOSeries(*arg_list)
- class Parallel(SISOLinearTimeInvariant):
- r"""
- A class for representing a parallel configuration of SISO systems.
- Parameters
- ==========
- args : SISOLinearTimeInvariant
- SISO systems in a parallel arrangement.
- evaluate : Boolean, Keyword
- When passed ``True``, returns the equivalent
- ``Parallel(*args).doit()``. Set to ``False`` by default.
- Raises
- ======
- ValueError
- When no argument is passed.
- ``var`` attribute is not same for every system.
- TypeError
- Any of the passed ``*args`` has unsupported type
- A combination of SISO and MIMO systems is
- passed. There should be homogeneity in the
- type of systems passed.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> tf3 = TransferFunction(p**2, p + s, s)
- >>> P1 = Parallel(tf1, tf2)
- >>> P1
- Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
- >>> P1.var
- s
- >>> P2 = Parallel(tf2, Series(tf3, -tf1))
- >>> P2
- Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s)))
- >>> P2.var
- s
- >>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
- >>> P3
- Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s)))
- >>> P3.var
- s
- You can get the resultant transfer function by using ``.doit()`` method:
- >>> Parallel(tf1, tf2, -tf3).doit()
- TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
- >>> Parallel(tf2, Series(tf1, -tf3)).doit()
- TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
- Notes
- =====
- All the transfer functions should use the same complex variable
- ``var`` of the Laplace transform.
- See Also
- ========
- Series, TransferFunction, Feedback
- """
- def __new__(cls, *args, evaluate=False):
- args = _flatten_args(args, Parallel)
- cls._check_args(args)
- obj = super().__new__(cls, *args)
- return obj.doit() if evaluate else obj
- @property
- def var(self):
- """
- Returns the complex variable used by all the transfer functions.
- Examples
- ========
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series
- >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
- >>> G2 = TransferFunction(p, 4 - p, p)
- >>> G3 = TransferFunction(0, p**4 - 1, p)
- >>> Parallel(G1, G2).var
- p
- >>> Parallel(-G3, Series(G1, G2)).var
- p
- """
- return self.args[0].var
- def doit(self, **hints):
- """
- Returns the resultant transfer function obtained after evaluating
- the transfer functions in parallel configuration.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Parallel
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> Parallel(tf2, tf1).doit()
- TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
- >>> Parallel(-tf1, -tf2).doit()
- TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
- """
- _arg = (arg.doit().to_expr() for arg in self.args)
- res = Add(*_arg).as_numer_denom()
- return TransferFunction(*res, self.var)
- def _eval_rewrite_as_TransferFunction(self, *args, **kwargs):
- return self.doit()
- @_check_other_SISO
- def __add__(self, other):
- self_arg_list = list(self.args)
- return Parallel(*self_arg_list, other)
- __radd__ = __add__
- @_check_other_SISO
- def __sub__(self, other):
- return self + (-other)
- def __rsub__(self, other):
- return -self + other
- @_check_other_SISO
- def __mul__(self, other):
- if isinstance(other, Series):
- arg_list = list(other.args)
- return Series(self, *arg_list)
- return Series(self, other)
- def __neg__(self):
- return Series(TransferFunction(-1, 1, self.var), self)
- def to_expr(self):
- """Returns the equivalent ``Expr`` object."""
- return Add(*(arg.to_expr() for arg in self.args), evaluate=False)
- @property
- def is_proper(self):
- """
- Returns True if degree of the numerator polynomial of the resultant transfer
- function is less than or equal to degree of the denominator polynomial of
- the same, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Parallel
- >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
- >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
- >>> tf3 = TransferFunction(s, s**2 + s + 1, s)
- >>> P1 = Parallel(-tf2, tf1)
- >>> P1.is_proper
- False
- >>> P2 = Parallel(tf2, tf3)
- >>> P2.is_proper
- True
- """
- return self.doit().is_proper
- @property
- def is_strictly_proper(self):
- """
- Returns True if degree of the numerator polynomial of the resultant transfer
- function is strictly less than degree of the denominator polynomial of
- the same, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Parallel
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> tf3 = TransferFunction(s, s**2 + s + 1, s)
- >>> P1 = Parallel(tf1, tf2)
- >>> P1.is_strictly_proper
- False
- >>> P2 = Parallel(tf2, tf3)
- >>> P2.is_strictly_proper
- True
- """
- return self.doit().is_strictly_proper
- @property
- def is_biproper(self):
- """
- Returns True if degree of the numerator polynomial of the resultant transfer
- function is equal to degree of the denominator polynomial of
- the same, else False.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, Parallel
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(p**2, p + s, s)
- >>> tf3 = TransferFunction(s, s**2 + s + 1, s)
- >>> P1 = Parallel(tf1, -tf2)
- >>> P1.is_biproper
- True
- >>> P2 = Parallel(tf2, tf3)
- >>> P2.is_biproper
- False
- """
- return self.doit().is_biproper
- class MIMOParallel(MIMOLinearTimeInvariant):
- r"""
- A class for representing a parallel configuration of MIMO systems.
- Parameters
- ==========
- args : MIMOLinearTimeInvariant
- MIMO Systems in a parallel arrangement.
- evaluate : Boolean, Keyword
- When passed ``True``, returns the equivalent
- ``MIMOParallel(*args).doit()``. Set to ``False`` by default.
- Raises
- ======
- ValueError
- When no argument is passed.
- ``var`` attribute is not same for every system.
- All MIMO systems passed do not have same shape.
- TypeError
- Any of the passed ``*args`` has unsupported type
- A combination of SISO and MIMO systems is
- passed. There should be homogeneity in the
- type of systems passed, MIMO in this case.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel
- >>> from sympy import Matrix, pprint
- >>> expr_1 = 1/s
- >>> expr_2 = s/(s**2-1)
- >>> expr_3 = (2 + s)/(s**2 - 1)
- >>> expr_4 = 5
- >>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s)
- >>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s)
- >>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s)
- >>> MIMOParallel(tfm_a, tfm_b, tfm_c)
- MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)))))
- >>> pprint(_, use_unicode=False) # For Better Visualization
- [ 1 s ] [ s 1 ] [s + 2 5 ]
- [ - ------] [------ - ] [------ - ]
- [ s 2 ] [ 2 s ] [ 2 1 ]
- [ s - 1] [s - 1 ] [s - 1 ]
- [ ] + [ ] + [ ]
- [s + 2 5 ] [ 5 s + 2 ] [ 1 s ]
- [------ - ] [ - ------] [ - ------]
- [ 2 1 ] [ 1 2 ] [ s 2 ]
- [s - 1 ]{t} [ s - 1]{t} [ s - 1]{t}
- >>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit()
- TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s))))
- >>> pprint(_, use_unicode=False)
- [ 2 2 / 2 \ ]
- [ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1]
- [ -------------------- -----------------------]
- [ / 2 \ / 2 \ ]
- [ s*\s - 1/ s*\s - 1/ ]
- [ ]
- [ 2 / 2 \ 2 ]
- [s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ]
- [--------------------------------- -------------- ]
- [ / 2 \ 2 ]
- [ s*\s - 1/ s - 1 ]{t}
- Notes
- =====
- All the transfer function matrices should use the same complex variable
- ``var`` of the Laplace transform.
- See Also
- ========
- Parallel, MIMOSeries
- """
- def __new__(cls, *args, evaluate=False):
- args = _flatten_args(args, MIMOParallel)
- cls._check_args(args)
- if any(arg.shape != args[0].shape for arg in args):
- raise TypeError("Shape of all the args is not equal.")
- obj = super().__new__(cls, *args)
- return obj.doit() if evaluate else obj
- @property
- def var(self):
- """
- Returns the complex variable used by all the systems.
- Examples
- ========
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel
- >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
- >>> G2 = TransferFunction(p, 4 - p, p)
- >>> G3 = TransferFunction(0, p**4 - 1, p)
- >>> G4 = TransferFunction(p**2, p**2 - 1, p)
- >>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]])
- >>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]])
- >>> MIMOParallel(tfm_a, tfm_b).var
- p
- """
- return self.args[0].var
- @property
- def num_inputs(self):
- """Returns the number of input signals of the parallel system."""
- return self.args[0].num_inputs
- @property
- def num_outputs(self):
- """Returns the number of output signals of the parallel system."""
- return self.args[0].num_outputs
- @property
- def shape(self):
- """Returns the shape of the equivalent MIMO system."""
- return self.num_outputs, self.num_inputs
- def doit(self, **hints):
- """
- Returns the resultant transfer function matrix obtained after evaluating
- the MIMO systems arranged in a parallel configuration.
- Examples
- ========
- >>> from sympy.abc import s, p, a, b
- >>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix
- >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
- >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
- >>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
- >>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
- >>> MIMOParallel(tfm_1, tfm_2).doit()
- TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s))))
- """
- _arg = (arg.doit()._expr_mat for arg in self.args)
- res = MatAdd(*_arg, evaluate=True)
- return TransferFunctionMatrix.from_Matrix(res, self.var)
- def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs):
- return self.doit()
- @_check_other_MIMO
- def __add__(self, other):
- self_arg_list = list(self.args)
- return MIMOParallel(*self_arg_list, other)
- __radd__ = __add__
- @_check_other_MIMO
- def __sub__(self, other):
- return self + (-other)
- def __rsub__(self, other):
- return -self + other
- @_check_other_MIMO
- def __mul__(self, other):
- if isinstance(other, MIMOSeries):
- arg_list = list(other.args)
- return MIMOSeries(*arg_list, self)
- return MIMOSeries(other, self)
- def __neg__(self):
- arg_list = [-arg for arg in list(self.args)]
- return MIMOParallel(*arg_list)
- class Feedback(SISOLinearTimeInvariant):
- r"""
- A class for representing closed-loop feedback interconnection between two
- SISO input/output systems.
- The first argument, ``sys1``, is the feedforward part of the closed-loop
- system or in simple words, the dynamical model representing the process
- to be controlled. The second argument, ``sys2``, is the feedback system
- and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2``
- can either be ``Series`` or ``TransferFunction`` objects.
- Parameters
- ==========
- sys1 : Series, TransferFunction
- The feedforward path system.
- sys2 : Series, TransferFunction, optional
- The feedback path system (often a feedback controller).
- It is the model sitting on the feedback path.
- If not specified explicitly, the sys2 is
- assumed to be unit (1.0) transfer function.
- sign : int, optional
- The sign of feedback. Can either be ``1``
- (for positive feedback) or ``-1`` (for negative feedback).
- Default value is `-1`.
- Raises
- ======
- ValueError
- When ``sys1`` and ``sys2`` are not using the
- same complex variable of the Laplace transform.
- When a combination of ``sys1`` and ``sys2`` yields
- zero denominator.
- TypeError
- When either ``sys1`` or ``sys2`` is not a ``Series`` or a
- ``TransferFunction`` object.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, Feedback
- >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> controller = TransferFunction(5*s - 10, s + 7, s)
- >>> F1 = Feedback(plant, controller)
- >>> F1
- Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
- >>> F1.var
- s
- >>> F1.args
- (TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
- You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively.
- >>> F1.sys1
- TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> F1.sys2
- TransferFunction(5*s - 10, s + 7, s)
- You can get the resultant closed loop transfer function obtained by negative feedback
- interconnection using ``.doit()`` method.
- >>> F1.doit()
- TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
- >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
- >>> C = TransferFunction(5*s + 10, s + 10, s)
- >>> F2 = Feedback(G*C, TransferFunction(1, 1, s))
- >>> F2.doit()
- TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s)
- To negate a ``Feedback`` object, the ``-`` operator can be prepended:
- >>> -F1
- Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1)
- >>> -F2
- Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1)
- See Also
- ========
- MIMOFeedback, Series, Parallel
- """
- def __new__(cls, sys1, sys2=None, sign=-1):
- if not sys2:
- sys2 = TransferFunction(1, 1, sys1.var)
- if not (isinstance(sys1, (TransferFunction, Series))
- and isinstance(sys2, (TransferFunction, Series))):
- raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.")
- if sign not in [-1, 1]:
- raise ValueError("Unsupported type for feedback. `sign` arg should "
- "either be 1 (positive feedback loop) or -1 (negative feedback loop).")
- if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign:
- raise ValueError("The equivalent system will have zero denominator.")
- if sys1.var != sys2.var:
- raise ValueError("Both `sys1` and `sys2` should be using the"
- " same complex variable.")
- return super().__new__(cls, sys1, sys2, _sympify(sign))
- @property
- def sys1(self):
- """
- Returns the feedforward system of the feedback interconnection.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction, Feedback
- >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> controller = TransferFunction(5*s - 10, s + 7, s)
- >>> F1 = Feedback(plant, controller)
- >>> F1.sys1
- TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
- >>> C = TransferFunction(5*p + 10, p + 10, p)
- >>> P = TransferFunction(1 - s, p + 2, p)
- >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
- >>> F2.sys1
- TransferFunction(1, 1, p)
- """
- return self.args[0]
- @property
- def sys2(self):
- """
- Returns the feedback controller of the feedback interconnection.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction, Feedback
- >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> controller = TransferFunction(5*s - 10, s + 7, s)
- >>> F1 = Feedback(plant, controller)
- >>> F1.sys2
- TransferFunction(5*s - 10, s + 7, s)
- >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
- >>> C = TransferFunction(5*p + 10, p + 10, p)
- >>> P = TransferFunction(1 - s, p + 2, p)
- >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
- >>> F2.sys2
- Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p))
- """
- return self.args[1]
- @property
- def var(self):
- """
- Returns the complex variable of the Laplace transform used by all
- the transfer functions involved in the feedback interconnection.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction, Feedback
- >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> controller = TransferFunction(5*s - 10, s + 7, s)
- >>> F1 = Feedback(plant, controller)
- >>> F1.var
- s
- >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
- >>> C = TransferFunction(5*p + 10, p + 10, p)
- >>> P = TransferFunction(1 - s, p + 2, p)
- >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
- >>> F2.var
- p
- """
- return self.sys1.var
- @property
- def sign(self):
- """
- Returns the type of MIMO Feedback model. ``1``
- for Positive and ``-1`` for Negative.
- """
- return self.args[2]
- @property
- def sensitivity(self):
- """
- Returns the sensitivity function of the feedback loop.
- Sensitivity of a Feedback system is the ratio
- of change in the open loop gain to the change in
- the closed loop gain.
- .. note::
- This method would not return the complementary
- sensitivity function.
- Examples
- ========
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, Feedback
- >>> C = TransferFunction(5*p + 10, p + 10, p)
- >>> P = TransferFunction(1 - p, p + 2, p)
- >>> F_1 = Feedback(P, C)
- >>> F_1.sensitivity
- 1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1)
- """
- return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr())
- def doit(self, cancel=False, expand=False, **hints):
- """
- Returns the resultant transfer function obtained by the
- feedback interconnection.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, Feedback
- >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
- >>> controller = TransferFunction(5*s - 10, s + 7, s)
- >>> F1 = Feedback(plant, controller)
- >>> F1.doit()
- TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
- >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
- >>> F2 = Feedback(G, TransferFunction(1, 1, s))
- >>> F2.doit()
- TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s)
- Use kwarg ``expand=True`` to expand the resultant transfer function.
- Use ``cancel=True`` to cancel out the common terms in numerator and
- denominator.
- >>> F2.doit(cancel=True, expand=True)
- TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s)
- >>> F2.doit(expand=True)
- TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s)
- """
- arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1]
- # F_n and F_d are resultant TFs of num and den of Feedback.
- F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var)
- if self.sign == -1:
- F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit()
- else:
- F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit()
- _resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var)
- if cancel:
- _resultant_tf = _resultant_tf.simplify()
- if expand:
- _resultant_tf = _resultant_tf.expand()
- return _resultant_tf
- def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs):
- return self.doit()
- def __neg__(self):
- return Feedback(-self.sys1, -self.sys2, self.sign)
- def _is_invertible(a, b, sign):
- """
- Checks whether a given pair of MIMO
- systems passed is invertible or not.
- """
- _mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat)
- _det = _mat.det()
- return _det != 0
- class MIMOFeedback(MIMOLinearTimeInvariant):
- r"""
- A class for representing closed-loop feedback interconnection between two
- MIMO input/output systems.
- Parameters
- ==========
- sys1 : MIMOSeries, TransferFunctionMatrix
- The MIMO system placed on the feedforward path.
- sys2 : MIMOSeries, TransferFunctionMatrix
- The system placed on the feedback path
- (often a feedback controller).
- sign : int, optional
- The sign of feedback. Can either be ``1``
- (for positive feedback) or ``-1`` (for negative feedback).
- Default value is `-1`.
- Raises
- ======
- ValueError
- When ``sys1`` and ``sys2`` are not using the
- same complex variable of the Laplace transform.
- Forward path model should have an equal number of inputs/outputs
- to the feedback path outputs/inputs.
- When product of ``sys1`` and ``sys2`` is not a square matrix.
- When the equivalent MIMO system is not invertible.
- TypeError
- When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a
- ``TransferFunctionMatrix`` object.
- Examples
- ========
- >>> from sympy import Matrix, pprint
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback
- >>> plant_mat = Matrix([[1, 1/s], [0, 1]])
- >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain
- >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s)
- >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s)
- >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default)
- >>> pprint(feedback, use_unicode=False)
- / [1 1] [10 0 ] \-1 [1 1]
- | [- -] [-- - ] | [- -]
- | [1 s] [1 1 ] | [1 s]
- |I + [ ] *[ ] | * [ ]
- | [0 1] [0 10] | [0 1]
- | [- -] [- --] | [- -]
- \ [1 1]{t} [1 1 ]{t}/ [1 1]{t}
- To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method.
- >>> pprint(feedback.doit(), use_unicode=False)
- [1 1 ]
- [-- -----]
- [11 121*s]
- [ ]
- [0 1 ]
- [- -- ]
- [1 11 ]{t}
- To negate the ``MIMOFeedback`` object, use ``-`` operator.
- >>> neg_feedback = -feedback
- >>> pprint(neg_feedback.doit(), use_unicode=False)
- [-1 -1 ]
- [--- -----]
- [ 11 121*s]
- [ ]
- [ 0 -1 ]
- [ - --- ]
- [ 1 11 ]{t}
- See Also
- ========
- Feedback, MIMOSeries, MIMOParallel
- """
- def __new__(cls, sys1, sys2, sign=-1):
- if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries))
- and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))):
- raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.")
- if sys1.num_inputs != sys2.num_outputs or \
- sys1.num_outputs != sys2.num_inputs:
- raise ValueError("Product of `sys1` and `sys2` "
- "must yield a square matrix.")
- if sign not in (-1, 1):
- raise ValueError("Unsupported type for feedback. `sign` arg should "
- "either be 1 (positive feedback loop) or -1 (negative feedback loop).")
- if not _is_invertible(sys1, sys2, sign):
- raise ValueError("Non-Invertible system inputted.")
- if sys1.var != sys2.var:
- raise ValueError("Both `sys1` and `sys2` should be using the"
- " same complex variable.")
- return super().__new__(cls, sys1, sys2, _sympify(sign))
- @property
- def sys1(self):
- r"""
- Returns the system placed on the feedforward path of the MIMO feedback interconnection.
- Examples
- ========
- >>> from sympy import pprint
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
- >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s)
- >>> tf2 = TransferFunction(1, s, s)
- >>> tf3 = TransferFunction(1, 1, s)
- >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
- >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]])
- >>> F_1 = MIMOFeedback(sys1, sys2, 1)
- >>> F_1.sys1
- TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s))))
- >>> pprint(_, use_unicode=False)
- [ 2 ]
- [s + s + 1 1 ]
- [---------- - ]
- [ 2 s ]
- [s - s + 1 ]
- [ ]
- [ 2 ]
- [ 1 s + s + 1]
- [ - ----------]
- [ s 2 ]
- [ s - s + 1]{t}
- """
- return self.args[0]
- @property
- def sys2(self):
- r"""
- Returns the feedback controller of the MIMO feedback interconnection.
- Examples
- ========
- >>> from sympy import pprint
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
- >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s)
- >>> tf2 = TransferFunction(1, s, s)
- >>> tf3 = TransferFunction(1, 1, s)
- >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
- >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
- >>> F_1 = MIMOFeedback(sys1, sys2)
- >>> F_1.sys2
- TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s))))
- >>> pprint(_, use_unicode=False)
- [ 2 ]
- [ s 1]
- [---------- -]
- [ 3 1]
- [s - s + 1 ]
- [ ]
- [ 1 1]
- [ - -]
- [ 1 s]{t}
- """
- return self.args[1]
- @property
- def var(self):
- r"""
- Returns the complex variable of the Laplace transform used by all
- the transfer functions involved in the MIMO feedback loop.
- Examples
- ========
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
- >>> tf1 = TransferFunction(p, 1 - p, p)
- >>> tf2 = TransferFunction(1, p, p)
- >>> tf3 = TransferFunction(1, 1, p)
- >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
- >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
- >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback
- >>> F_1.var
- p
- """
- return self.sys1.var
- @property
- def sign(self):
- r"""
- Returns the type of feedback interconnection of two models. ``1``
- for Positive and ``-1`` for Negative.
- """
- return self.args[2]
- @property
- def sensitivity(self):
- r"""
- Returns the sensitivity function matrix of the feedback loop.
- Sensitivity of a closed-loop system is the ratio of change
- in the open loop gain to the change in the closed loop gain.
- .. note::
- This method would not return the complementary
- sensitivity function.
- Examples
- ========
- >>> from sympy import pprint
- >>> from sympy.abc import p
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
- >>> tf1 = TransferFunction(p, 1 - p, p)
- >>> tf2 = TransferFunction(1, p, p)
- >>> tf3 = TransferFunction(1, 1, p)
- >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
- >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
- >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback
- >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback
- >>> pprint(F_1.sensitivity, use_unicode=False)
- [ 4 3 2 5 4 2 ]
- [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ]
- [---------------------------- -----------------------------]
- [ 4 3 2 5 4 3 2 ]
- [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p]
- [ ]
- [ 4 3 2 3 2 ]
- [ p - p - p + p 3*p - 6*p + 4*p - 1 ]
- [ -------------------------- -------------------------- ]
- [ 4 3 2 4 3 2 ]
- [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ]
- >>> pprint(F_2.sensitivity, use_unicode=False)
- [ 4 3 2 5 4 2 ]
- [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1]
- [------------------------ --------------------------]
- [ 4 3 5 4 2 ]
- [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ]
- [ ]
- [ 4 3 2 4 3 ]
- [ p - p - p + p 2*p - 3*p + 2*p - 1 ]
- [ ------------------- --------------------- ]
- [ 4 3 4 3 ]
- [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ]
- """
- _sys1_mat = self.sys1.doit()._expr_mat
- _sys2_mat = self.sys2.doit()._expr_mat
- return (eye(self.sys1.num_inputs) - \
- self.sign*_sys1_mat*_sys2_mat).inv()
- def doit(self, cancel=True, expand=False, **hints):
- r"""
- Returns the resultant transfer function matrix obtained by the
- feedback interconnection.
- Examples
- ========
- >>> from sympy import pprint
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
- >>> tf1 = TransferFunction(s, 1 - s, s)
- >>> tf2 = TransferFunction(1, s, s)
- >>> tf3 = TransferFunction(5, 1, s)
- >>> tf4 = TransferFunction(s - 1, s, s)
- >>> tf5 = TransferFunction(0, 1, s)
- >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
- >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]])
- >>> F_1 = MIMOFeedback(sys1, sys2, 1)
- >>> pprint(F_1, use_unicode=False)
- / [ s 1 ] [5 0] \-1 [ s 1 ]
- | [----- - ] [- -] | [----- - ]
- | [1 - s s ] [1 1] | [1 - s s ]
- |I - [ ] *[ ] | * [ ]
- | [ 5 s - 1] [0 0] | [ 5 s - 1]
- | [ - -----] [- -] | [ - -----]
- \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t}
- >>> pprint(F_1.doit(), use_unicode=False)
- [ -s s - 1 ]
- [------- ----------- ]
- [6*s - 1 s*(6*s - 1) ]
- [ ]
- [5*s - 5 (s - 1)*(6*s + 24)]
- [------- ------------------]
- [6*s - 1 s*(6*s - 1) ]{t}
- If the user wants the resultant ``TransferFunctionMatrix`` object without
- canceling the common factors then the ``cancel`` kwarg should be passed ``False``.
- >>> pprint(F_1.doit(cancel=False), use_unicode=False)
- [ 25*s*(1 - s) 25 - 25*s ]
- [ -------------------- -------------- ]
- [ 25*(1 - 6*s)*(1 - s) 25*s*(1 - 6*s) ]
- [ ]
- [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)]
- [----------------------------------- -----------------------------------]
- [ (1 - s)*(6*s - 1) 2 ]
- [ s *(6*s - 1) ]{t}
- If the user wants the expanded form of the resultant transfer function matrix,
- the ``expand`` kwarg should be passed as ``True``.
- >>> pprint(F_1.doit(expand=True), use_unicode=False)
- [ -s s - 1 ]
- [------- -------- ]
- [6*s - 1 2 ]
- [ 6*s - s ]
- [ ]
- [ 2 ]
- [5*s - 5 6*s + 18*s - 24]
- [------- ----------------]
- [6*s - 1 2 ]
- [ 6*s - s ]{t}
- """
- _mat = self.sensitivity * self.sys1.doit()._expr_mat
- _resultant_tfm = _to_TFM(_mat, self.var)
- if cancel:
- _resultant_tfm = _resultant_tfm.simplify()
- if expand:
- _resultant_tfm = _resultant_tfm.expand()
- return _resultant_tfm
- def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs):
- return self.doit()
- def __neg__(self):
- return MIMOFeedback(-self.sys1, -self.sys2, self.sign)
- def _to_TFM(mat, var):
- """Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently"""
- to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var)
- arg = [[to_tf(expr) for expr in row] for row in mat.tolist()]
- return TransferFunctionMatrix(arg)
- class TransferFunctionMatrix(MIMOLinearTimeInvariant):
- r"""
- A class for representing the MIMO (multiple-input and multiple-output)
- generalization of the SISO (single-input and single-output) transfer function.
- It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``).
- There is only one argument, ``arg`` which is also the compulsory argument.
- ``arg`` is expected to be strictly of the type list of lists
- which holds the transfer functions or reducible to transfer functions.
- Parameters
- ==========
- arg : Nested ``List`` (strictly).
- Users are expected to input a nested list of ``TransferFunction``, ``Series``
- and/or ``Parallel`` objects.
- Examples
- ========
- .. note::
- ``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects.
- >>> from sympy.abc import s, p, a
- >>> from sympy import pprint
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel
- >>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s)
- >>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s)
- >>> tf_3 = TransferFunction(3, s + 2, s)
- >>> tf_4 = TransferFunction(-a + p, 9*s - 9, s)
- >>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]])
- >>> tfm_1
- TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)))
- >>> tfm_1.var
- s
- >>> tfm_1.num_inputs
- 1
- >>> tfm_1.num_outputs
- 3
- >>> tfm_1.shape
- (3, 1)
- >>> tfm_1.args
- (((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),)
- >>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]])
- >>> tfm_2
- TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
- >>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization
- [ a + s -3 ]
- [ ---------- ----- ]
- [ 2 s + 2 ]
- [ s + s + 1 ]
- [ ]
- [ 4 ]
- [p - 3*p + 2 -a - s ]
- [------------ ---------- ]
- [ p + s 2 ]
- [ s + s + 1 ]
- [ ]
- [ 4 ]
- [ 3 - p + 3*p - 2]
- [ ----- --------------]
- [ s + 2 p + s ]{t}
- TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions
- >>> tfm_2.transpose()
- TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
- >>> pprint(_, use_unicode=False)
- [ 4 ]
- [ a + s p - 3*p + 2 3 ]
- [---------- ------------ ----- ]
- [ 2 p + s s + 2 ]
- [s + s + 1 ]
- [ ]
- [ 4 ]
- [ -3 -a - s - p + 3*p - 2]
- [ ----- ---------- --------------]
- [ s + 2 2 p + s ]
- [ s + s + 1 ]{t}
- >>> tf_5 = TransferFunction(5, s, s)
- >>> tf_6 = TransferFunction(5*s, (2 + s**2), s)
- >>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s)
- >>> tf_8 = TransferFunction(5, 1, s)
- >>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]])
- >>> tfm_3
- TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))))
- >>> pprint(tfm_3, use_unicode=False)
- [ 5 5*s ]
- [ - ------]
- [ s 2 ]
- [ s + 2]
- [ ]
- [ 5 5 ]
- [---------- - ]
- [ / 2 \ 1 ]
- [s*\s + 2/ ]{t}
- >>> tfm_3.var
- s
- >>> tfm_3.shape
- (2, 2)
- >>> tfm_3.num_outputs
- 2
- >>> tfm_3.num_inputs
- 2
- >>> tfm_3.args
- (((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),)
- To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation.
- >>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes
- TransferFunction(5, s*(s**2 + 2), s)
- >>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col.
- TransferFunction(5, s, s)
- >>> tfm_3[:, 0] # gives the first column
- TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),)))
- >>> pprint(_, use_unicode=False)
- [ 5 ]
- [ - ]
- [ s ]
- [ ]
- [ 5 ]
- [----------]
- [ / 2 \]
- [s*\s + 2/]{t}
- >>> tfm_3[0, :] # gives the first row
- TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),))
- >>> pprint(_, use_unicode=False)
- [5 5*s ]
- [- ------]
- [s 2 ]
- [ s + 2]{t}
- To negate a transfer function matrix, ``-`` operator can be prepended:
- >>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]])
- >>> -tfm_4
- TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),)))
- >>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]])
- >>> -tfm_5
- TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s))))
- ``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not
- mutate your original ``TransferFunctionMatrix``.
- >>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2.
- TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))))
- >>> pprint(_, use_unicode=False)
- [ a + s -3 ]
- [---------- ----- ]
- [ 2 s + 2 ]
- [s + s + 1 ]
- [ ]
- [ 12 -a - s ]
- [ ----- ----------]
- [ s + 2 2 ]
- [ s + s + 1]
- [ ]
- [ 3 -12 ]
- [ ----- ----- ]
- [ s + 2 s + 2 ]{t}
- >>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution
- [ a + s -3 ]
- [ ---------- ----- ]
- [ 2 s + 2 ]
- [ s + s + 1 ]
- [ ]
- [ 4 ]
- [p - 3*p + 2 -a - s ]
- [------------ ---------- ]
- [ p + s 2 ]
- [ s + s + 1 ]
- [ ]
- [ 4 ]
- [ 3 - p + 3*p - 2]
- [ ----- --------------]
- [ s + 2 p + s ]{t}
- ``subs()`` also supports multiple substitutions.
- >>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1
- TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))))
- >>> pprint(_, use_unicode=False)
- [ s + 1 -3 ]
- [---------- ----- ]
- [ 2 s + 2 ]
- [s + s + 1 ]
- [ ]
- [ 12 -s - 1 ]
- [ ----- ----------]
- [ s + 2 2 ]
- [ s + s + 1]
- [ ]
- [ 3 -12 ]
- [ ----- ----- ]
- [ s + 2 s + 2 ]{t}
- Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using
- ``doit()``.
- >>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]])
- >>> tfm_6
- TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),))
- >>> pprint(tfm_6, use_unicode=False)
- [ -a + p 3 -a + p 3 ]
- [-------*----- ------- + -----]
- [9*s - 9 s + 2 9*s - 9 s + 2]{t}
- >>> tfm_6.doit()
- TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),))
- >>> pprint(_, use_unicode=False)
- [ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27]
- [----------------- ----------------------------]
- [(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t}
- >>> tf_9 = TransferFunction(1, s, s)
- >>> tf_10 = TransferFunction(1, s**2, s)
- >>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]])
- >>> tfm_7
- TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s)))))
- >>> pprint(tfm_7, use_unicode=False)
- [ 1 1 ]
- [---- - ]
- [ 2 s ]
- [s*s ]
- [ ]
- [ 1 1 1]
- [ -- -- + -]
- [ 2 2 s]
- [ s s ]{t}
- >>> tfm_7.doit()
- TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s))))
- >>> pprint(_, use_unicode=False)
- [1 1 ]
- [-- - ]
- [ 3 s ]
- [s ]
- [ ]
- [ 2 ]
- [1 s + s]
- [-- ------]
- [ 2 3 ]
- [s s ]{t}
- Addition, subtraction, and multiplication of transfer function matrices can form
- unevaluated ``Series`` or ``Parallel`` objects.
- - For addition and subtraction:
- All the transfer function matrices must have the same shape.
- - For multiplication (C = A * B):
- The number of inputs of the first transfer function matrix (A) must be equal to the
- number of outputs of the second transfer function matrix (B).
- Also, use pretty-printing (``pprint``) to analyse better.
- >>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]])
- >>> tfm_9 = TransferFunctionMatrix([[-tf_3]])
- >>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]])
- >>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]])
- >>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]])
- >>> tfm_8 + tfm_10
- MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))))
- >>> pprint(_, use_unicode=False)
- [ 3 ] [ a + s ]
- [ ----- ] [ ---------- ]
- [ s + 2 ] [ 2 ]
- [ ] [ s + s + 1 ]
- [ 4 ] [ ]
- [p - 3*p + 2] [ 4 ]
- [------------] + [p - 3*p + 2]
- [ p + s ] [------------]
- [ ] [ p + s ]
- [ -a - s ] [ ]
- [ ---------- ] [ -a + p ]
- [ 2 ] [ ------- ]
- [ s + s + 1 ]{t} [ 9*s - 9 ]{t}
- >>> -tfm_10 - tfm_8
- MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),))))
- >>> pprint(_, use_unicode=False)
- [ -a - s ] [ -3 ]
- [ ---------- ] [ ----- ]
- [ 2 ] [ s + 2 ]
- [ s + s + 1 ] [ ]
- [ ] [ 4 ]
- [ 4 ] [- p + 3*p - 2]
- [- p + 3*p - 2] + [--------------]
- [--------------] [ p + s ]
- [ p + s ] [ ]
- [ ] [ a + s ]
- [ a - p ] [ ---------- ]
- [ ------- ] [ 2 ]
- [ 9*s - 9 ]{t} [ s + s + 1 ]{t}
- >>> tfm_12 * tfm_8
- MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s)))))
- >>> pprint(_, use_unicode=False)
- [ 3 ]
- [ ----- ]
- [ -a + p -a - s 3 ] [ s + 2 ]
- [ ------- ---------- -----] [ ]
- [ 9*s - 9 2 s + 2] [ 4 ]
- [ s + s + 1 ] [p - 3*p + 2]
- [ ] *[------------]
- [ 4 ] [ p + s ]
- [- p + 3*p - 2 a - p -3 ] [ ]
- [-------------- ------- -----] [ -a - s ]
- [ p + s 9*s - 9 s + 2]{t} [ ---------- ]
- [ 2 ]
- [ s + s + 1 ]{t}
- >>> tfm_12 * tfm_8 * tfm_9
- MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s)))))
- >>> pprint(_, use_unicode=False)
- [ 3 ]
- [ ----- ]
- [ -a + p -a - s 3 ] [ s + 2 ]
- [ ------- ---------- -----] [ ]
- [ 9*s - 9 2 s + 2] [ 4 ]
- [ s + s + 1 ] [p - 3*p + 2] [ -3 ]
- [ ] *[------------] *[-----]
- [ 4 ] [ p + s ] [s + 2]{t}
- [- p + 3*p - 2 a - p -3 ] [ ]
- [-------------- ------- -----] [ -a - s ]
- [ p + s 9*s - 9 s + 2]{t} [ ---------- ]
- [ 2 ]
- [ s + s + 1 ]{t}
- >>> tfm_10 + tfm_8*tfm_9
- MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),)))))
- >>> pprint(_, use_unicode=False)
- [ a + s ] [ 3 ]
- [ ---------- ] [ ----- ]
- [ 2 ] [ s + 2 ]
- [ s + s + 1 ] [ ]
- [ ] [ 4 ]
- [ 4 ] [p - 3*p + 2] [ -3 ]
- [p - 3*p + 2] + [------------] *[-----]
- [------------] [ p + s ] [s + 2]{t}
- [ p + s ] [ ]
- [ ] [ -a - s ]
- [ -a + p ] [ ---------- ]
- [ ------- ] [ 2 ]
- [ 9*s - 9 ]{t} [ s + s + 1 ]{t}
- These unevaluated ``Series`` or ``Parallel`` objects can convert into the
- resultant transfer function matrix using ``.doit()`` method or by
- ``.rewrite(TransferFunctionMatrix)``.
- >>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit()
- TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),)))
- >>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix)
- TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),)))
- See Also
- ========
- TransferFunction, MIMOSeries, MIMOParallel, Feedback
- """
- def __new__(cls, arg):
- expr_mat_arg = []
- try:
- var = arg[0][0].var
- except TypeError:
- raise ValueError("`arg` param in TransferFunctionMatrix should "
- "strictly be a nested list containing TransferFunction objects.")
- for row_index, row in enumerate(arg):
- temp = []
- for col_index, element in enumerate(row):
- if not isinstance(element, SISOLinearTimeInvariant):
- raise TypeError("Each element is expected to be of type `SISOLinearTimeInvariant`.")
- if var != element.var:
- raise ValueError("Conflicting value(s) found for `var`. All TransferFunction instances in "
- "TransferFunctionMatrix should use the same complex variable in Laplace domain.")
- temp.append(element.to_expr())
- expr_mat_arg.append(temp)
- if isinstance(arg, (tuple, list, Tuple)):
- # Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple
- arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False)
- obj = super(TransferFunctionMatrix, cls).__new__(cls, arg)
- obj._expr_mat = ImmutableMatrix(expr_mat_arg)
- return obj
- @classmethod
- def from_Matrix(cls, matrix, var):
- """
- Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects.
- Parameters
- ==========
- matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements.
- var : Symbol
- Complex variable of the Laplace transform which will be used by the
- all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunctionMatrix
- >>> from sympy import Matrix, pprint
- >>> M = Matrix([[s, 1/s], [1/(s+1), s]])
- >>> M_tf = TransferFunctionMatrix.from_Matrix(M, s)
- >>> pprint(M_tf, use_unicode=False)
- [ s 1]
- [ - -]
- [ 1 s]
- [ ]
- [ 1 s]
- [----- -]
- [s + 1 1]{t}
- >>> M_tf.elem_poles()
- [[[], [0]], [[-1], []]]
- >>> M_tf.elem_zeros()
- [[[0], []], [[], [0]]]
- """
- return _to_TFM(matrix, var)
- @property
- def var(self):
- """
- Returns the complex variable used by all the transfer functions or
- ``Series``/``Parallel`` objects in a transfer function matrix.
- Examples
- ========
- >>> from sympy.abc import p, s
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel
- >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
- >>> G2 = TransferFunction(p, 4 - p, p)
- >>> G3 = TransferFunction(0, p**4 - 1, p)
- >>> G4 = TransferFunction(s + 1, s**2 + s + 1, s)
- >>> S1 = Series(G1, G2)
- >>> S2 = Series(-G3, Parallel(G2, -G1))
- >>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]])
- >>> tfm1.var
- p
- >>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]])
- >>> tfm2.var
- p
- >>> tfm3 = TransferFunctionMatrix([[G4]])
- >>> tfm3.var
- s
- """
- return self.args[0][0][0].var
- @property
- def num_inputs(self):
- """
- Returns the number of inputs of the system.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
- >>> G1 = TransferFunction(s + 3, s**2 - 3, s)
- >>> G2 = TransferFunction(4, s**2, s)
- >>> G3 = TransferFunction(p**2 + s**2, p - 3, s)
- >>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]])
- >>> tfm_1.num_inputs
- 3
- See Also
- ========
- num_outputs
- """
- return self._expr_mat.shape[1]
- @property
- def num_outputs(self):
- """
- Returns the number of outputs of the system.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunctionMatrix
- >>> from sympy import Matrix
- >>> M_1 = Matrix([[s], [1/s]])
- >>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s)
- >>> print(TFM)
- TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),)))
- >>> TFM.num_outputs
- 2
- See Also
- ========
- num_inputs
- """
- return self._expr_mat.shape[0]
- @property
- def shape(self):
- """
- Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``.
- Examples
- ========
- >>> from sympy.abc import s, p
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
- >>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p)
- >>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p)
- >>> tf3 = TransferFunction(3, 4, p)
- >>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]])
- >>> tfm1.shape
- (1, 2)
- >>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]])
- >>> tfm2.shape
- (2, 2)
- """
- return self._expr_mat.shape
- def __neg__(self):
- neg = -self._expr_mat
- return _to_TFM(neg, self.var)
- @_check_other_MIMO
- def __add__(self, other):
- if not isinstance(other, MIMOParallel):
- return MIMOParallel(self, other)
- other_arg_list = list(other.args)
- return MIMOParallel(self, *other_arg_list)
- @_check_other_MIMO
- def __sub__(self, other):
- return self + (-other)
- @_check_other_MIMO
- def __mul__(self, other):
- if not isinstance(other, MIMOSeries):
- return MIMOSeries(other, self)
- other_arg_list = list(other.args)
- return MIMOSeries(*other_arg_list, self)
- def __getitem__(self, key):
- trunc = self._expr_mat.__getitem__(key)
- if isinstance(trunc, ImmutableMatrix):
- return _to_TFM(trunc, self.var)
- return TransferFunction.from_rational_expression(trunc, self.var)
- def transpose(self):
- """Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers)."""
- transposed_mat = self._expr_mat.transpose()
- return _to_TFM(transposed_mat, self.var)
- def elem_poles(self):
- """
- Returns the poles of each element of the ``TransferFunctionMatrix``.
- .. note::
- Actual poles of a MIMO system are NOT the poles of individual elements.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
- >>> tf_1 = TransferFunction(3, (s + 1), s)
- >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
- >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
- >>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s)
- >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
- >>> tfm_1
- TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s))))
- >>> tfm_1.elem_poles()
- [[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]]
- See Also
- ========
- elem_zeros
- """
- return [[element.poles() for element in row] for row in self.doit().args[0]]
- def elem_zeros(self):
- """
- Returns the zeros of each element of the ``TransferFunctionMatrix``.
- .. note::
- Actual zeros of a MIMO system are NOT the zeros of individual elements.
- Examples
- ========
- >>> from sympy.abc import s
- >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
- >>> tf_1 = TransferFunction(3, (s + 1), s)
- >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
- >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
- >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)
- >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
- >>> tfm_1
- TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s))))
- >>> tfm_1.elem_zeros()
- [[[], [-6]], [[-3], [4, 5]]]
- See Also
- ========
- elem_poles
- """
- return [[element.zeros() for element in row] for row in self.doit().args[0]]
- def _flat(self):
- """Returns flattened list of args in TransferFunctionMatrix"""
- return [elem for tup in self.args[0] for elem in tup]
- def _eval_evalf(self, prec):
- """Calls evalf() on each transfer function in the transfer function matrix"""
- dps = prec_to_dps(prec)
- mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps))
- return _to_TFM(mat, self.var)
- def _eval_simplify(self, **kwargs):
- """Simplifies the transfer function matrix"""
- simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False))
- return _to_TFM(simp_mat, self.var)
- def expand(self, **hints):
- """Expands the transfer function matrix"""
- expand_mat = self._expr_mat.expand(**hints)
- return _to_TFM(expand_mat, self.var)
|