123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- from sympy import sin, Function, symbols, Dummy, Lambda, cos
- from sympy.parsing.mathematica import parse_mathematica, MathematicaParser
- from sympy.core.sympify import sympify
- from sympy.abc import n, w, x, y, z
- from sympy.testing.pytest import raises
- def test_mathematica():
- d = {
- '- 6x': '-6*x',
- 'Sin[x]^2': 'sin(x)**2',
- '2(x-1)': '2*(x-1)',
- '3y+8': '3*y+8',
- 'ArcSin[2x+9(4-x)^2]/x': 'asin(2*x+9*(4-x)**2)/x',
- 'x+y': 'x+y',
- '355/113': '355/113',
- '2.718281828': '2.718281828',
- 'Cos(1/2 * π)': 'Cos(π/2)',
- 'Sin[12]': 'sin(12)',
- 'Exp[Log[4]]': 'exp(log(4))',
- '(x+1)(x+3)': '(x+1)*(x+3)',
- 'Cos[ArcCos[3.6]]': 'cos(acos(3.6))',
- 'Cos[x]==Sin[y]': 'Eq(cos(x), sin(y))',
- '2*Sin[x+y]': '2*sin(x+y)',
- 'Sin[x]+Cos[y]': 'sin(x)+cos(y)',
- 'Sin[Cos[x]]': 'sin(cos(x))',
- '2*Sqrt[x+y]': '2*sqrt(x+y)', # Test case from the issue 4259
- '+Sqrt[2]': 'sqrt(2)',
- '-Sqrt[2]': '-sqrt(2)',
- '-1/Sqrt[2]': '-1/sqrt(2)',
- '-(1/Sqrt[3])': '-(1/sqrt(3))',
- '1/(2*Sqrt[5])': '1/(2*sqrt(5))',
- 'Mod[5,3]': 'Mod(5,3)',
- '-Mod[5,3]': '-Mod(5,3)',
- '(x+1)y': '(x+1)*y',
- 'x(y+1)': 'x*(y+1)',
- 'Sin[x]Cos[y]': 'sin(x)*cos(y)',
- 'Sin[x]^2Cos[y]^2': 'sin(x)**2*cos(y)**2',
- 'Cos[x]^2(1 - Cos[y]^2)': 'cos(x)**2*(1-cos(y)**2)',
- 'x y': 'x*y',
- 'x y': 'x*y',
- '2 x': '2*x',
- 'x 8': 'x*8',
- '2 8': '2*8',
- '4.x': '4.*x',
- '4. 3': '4.*3',
- '4. 3.': '4.*3.',
- '1 2 3': '1*2*3',
- ' - 2 * Sqrt[ 2 3 * ( 1 + 5 ) ] ': '-2*sqrt(2*3*(1+5))',
- 'Log[2,4]': 'log(4,2)',
- 'Log[Log[2,4],4]': 'log(4,log(4,2))',
- 'Exp[Sqrt[2]^2Log[2, 8]]': 'exp(sqrt(2)**2*log(8,2))',
- 'ArcSin[Cos[0]]': 'asin(cos(0))',
- 'Log2[16]': 'log(16,2)',
- 'Max[1,-2,3,-4]': 'Max(1,-2,3,-4)',
- 'Min[1,-2,3]': 'Min(1,-2,3)',
- 'Exp[I Pi/2]': 'exp(I*pi/2)',
- 'ArcTan[x,y]': 'atan2(y,x)',
- 'Pochhammer[x,y]': 'rf(x,y)',
- 'ExpIntegralEi[x]': 'Ei(x)',
- 'SinIntegral[x]': 'Si(x)',
- 'CosIntegral[x]': 'Ci(x)',
- 'AiryAi[x]': 'airyai(x)',
- 'AiryAiPrime[5]': 'airyaiprime(5)',
- 'AiryBi[x]': 'airybi(x)',
- 'AiryBiPrime[7]': 'airybiprime(7)',
- 'LogIntegral[4]': ' li(4)',
- 'PrimePi[7]': 'primepi(7)',
- 'Prime[5]': 'prime(5)',
- 'PrimeQ[5]': 'isprime(5)'
- }
- for e in d:
- assert parse_mathematica(e) == sympify(d[e])
- # The parsed form of this expression should not evaluate the Lambda object:
- assert parse_mathematica("Sin[#]^2 + Cos[#]^2 &[x]") == sin(x)**2 + cos(x)**2
- d1, d2, d3 = symbols("d1:4", cls=Dummy)
- assert parse_mathematica("Sin[#] + Cos[#3] &").dummy_eq(Lambda((d1, d2, d3), sin(d1) + cos(d3)))
- assert parse_mathematica("Sin[#^2] &").dummy_eq(Lambda(d1, sin(d1**2)))
- assert parse_mathematica("Function[x, x^3]") == Lambda(x, x**3)
- assert parse_mathematica("Function[{x, y}, x^2 + y^2]") == Lambda((x, y), x**2 + y**2)
- def test_parser_mathematica_tokenizer():
- parser = MathematicaParser()
- chain = lambda expr: parser._from_tokens_to_fullformlist(parser._from_mathematica_to_tokens(expr))
- # Basic patterns
- assert chain("x") == "x"
- assert chain("42") == "42"
- assert chain(".2") == ".2"
- assert chain("+x") == "x"
- assert chain("-1") == "-1"
- assert chain("- 3") == "-3"
- assert chain("α") == "α"
- assert chain("+Sin[x]") == ["Sin", "x"]
- assert chain("-Sin[x]") == ["Times", "-1", ["Sin", "x"]]
- assert chain("x(a+1)") == ["Times", "x", ["Plus", "a", "1"]]
- assert chain("(x)") == "x"
- assert chain("(+x)") == "x"
- assert chain("-a") == ["Times", "-1", "a"]
- assert chain("(-x)") == ["Times", "-1", "x"]
- assert chain("(x + y)") == ["Plus", "x", "y"]
- assert chain("3 + 4") == ["Plus", "3", "4"]
- assert chain("a - 3") == ["Plus", "a", "-3"]
- assert chain("a - b") == ["Plus", "a", ["Times", "-1", "b"]]
- assert chain("7 * 8") == ["Times", "7", "8"]
- assert chain("a + b*c") == ["Plus", "a", ["Times", "b", "c"]]
- assert chain("a + b* c* d + 2 * e") == ["Plus", "a", ["Times", "b", "c", "d"], ["Times", "2", "e"]]
- assert chain("a / b") == ["Times", "a", ["Power", "b", "-1"]]
- # Missing asterisk (*) patterns:
- assert chain("x y") == ["Times", "x", "y"]
- assert chain("3 4") == ["Times", "3", "4"]
- assert chain("a[b] c") == ["Times", ["a", "b"], "c"]
- assert chain("(x) (y)") == ["Times", "x", "y"]
- assert chain("3 (a)") == ["Times", "3", "a"]
- assert chain("(a) b") == ["Times", "a", "b"]
- assert chain("4.2") == "4.2"
- assert chain("4 2") == ["Times", "4", "2"]
- assert chain("4 2") == ["Times", "4", "2"]
- assert chain("3 . 4") == ["Dot", "3", "4"]
- assert chain("4. 2") == ["Times", "4.", "2"]
- assert chain("x.y") == ["Dot", "x", "y"]
- assert chain("4.y") == ["Times", "4.", "y"]
- assert chain("4 .y") == ["Dot", "4", "y"]
- assert chain("x.4") == ["Times", "x", ".4"]
- assert chain("x0.3") == ["Times", "x0", ".3"]
- assert chain("x. 4") == ["Dot", "x", "4"]
- # Comments
- assert chain("a (* +b *) + c") == ["Plus", "a", "c"]
- assert chain("a (* + b *) + (**)c (* +d *) + e") == ["Plus", "a", "c", "e"]
- assert chain("""a + (*
- + b
- *) c + (* d
- *) e
- """) == ["Plus", "a", "c", "e"]
- # Operators couples + and -, * and / are mutually associative:
- # (i.e. expression gets flattened when mixing these operators)
- assert chain("a*b/c") == ["Times", "a", "b", ["Power", "c", "-1"]]
- assert chain("a/b*c") == ["Times", "a", ["Power", "b", "-1"], "c"]
- assert chain("a+b-c") == ["Plus", "a", "b", ["Times", "-1", "c"]]
- assert chain("a-b+c") == ["Plus", "a", ["Times", "-1", "b"], "c"]
- assert chain("-a + b -c ") == ["Plus", ["Times", "-1", "a"], "b", ["Times", "-1", "c"]]
- assert chain("a/b/c*d") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"], "d"]
- assert chain("a/b/c") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"]]
- assert chain("a-b-c") == ["Plus", "a", ["Times", "-1", "b"], ["Times", "-1", "c"]]
- assert chain("1/a") == ["Times", "1", ["Power", "a", "-1"]]
- assert chain("1/a/b") == ["Times", "1", ["Power", "a", "-1"], ["Power", "b", "-1"]]
- assert chain("-1/a*b") == ["Times", "-1", ["Power", "a", "-1"], "b"]
- # Enclosures of various kinds, i.e. ( ) [ ] [[ ]] { }
- assert chain("(a + b) + c") == ["Plus", ["Plus", "a", "b"], "c"]
- assert chain(" a + (b + c) + d ") == ["Plus", "a", ["Plus", "b", "c"], "d"]
- assert chain("a * (b + c)") == ["Times", "a", ["Plus", "b", "c"]]
- assert chain("a b (c d)") == ["Times", "a", "b", ["Times", "c", "d"]]
- assert chain("{a, b, 2, c}") == ["List", "a", "b", "2", "c"]
- assert chain("{a, {b, c}}") == ["List", "a", ["List", "b", "c"]]
- assert chain("{{a}}") == ["List", ["List", "a"]]
- assert chain("a[b, c]") == ["a", "b", "c"]
- assert chain("a[[b, c]]") == ["Part", "a", "b", "c"]
- assert chain("a[b[c]]") == ["a", ["b", "c"]]
- assert chain("a[[b, c[[d, {e,f}]]]]") == ["Part", "a", "b", ["Part", "c", "d", ["List", "e", "f"]]]
- assert chain("a[b[[c,d]]]") == ["a", ["Part", "b", "c", "d"]]
- assert chain("a[[b[c]]]") == ["Part", "a", ["b", "c"]]
- assert chain("a[[b[[c]]]]") == ["Part", "a", ["Part", "b", "c"]]
- assert chain("a[[b[c[[d]]]]]") == ["Part", "a", ["b", ["Part", "c", "d"]]]
- assert chain("a[b[[c[d]]]]") == ["a", ["Part", "b", ["c", "d"]]]
- assert chain("x[[a+1, b+2, c+3]]") == ["Part", "x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
- assert chain("x[a+1, b+2, c+3]") == ["x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
- assert chain("{a+1, b+2, c+3}") == ["List", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
- # Flat operator:
- assert chain("a*b*c*d*e") == ["Times", "a", "b", "c", "d", "e"]
- assert chain("a +b + c+ d+e") == ["Plus", "a", "b", "c", "d", "e"]
- # Right priority operator:
- assert chain("a^b") == ["Power", "a", "b"]
- assert chain("a^b^c") == ["Power", "a", ["Power", "b", "c"]]
- assert chain("a^b^c^d") == ["Power", "a", ["Power", "b", ["Power", "c", "d"]]]
- # Left priority operator:
- assert chain("a/.b") == ["ReplaceAll", "a", "b"]
- assert chain("a/.b/.c/.d") == ["ReplaceAll", ["ReplaceAll", ["ReplaceAll", "a", "b"], "c"], "d"]
- assert chain("a//b") == ["a", "b"]
- assert chain("a//b//c") == [["a", "b"], "c"]
- assert chain("a//b//c//d") == [[["a", "b"], "c"], "d"]
- # Compound expressions
- assert chain("a;b") == ["CompoundExpression", "a", "b"]
- assert chain("a;") == ["CompoundExpression", "a", "Null"]
- assert chain("a;b;") == ["CompoundExpression", "a", "b", "Null"]
- assert chain("a[b;c]") == ["a", ["CompoundExpression", "b", "c"]]
- assert chain("a[b,c;d,e]") == ["a", "b", ["CompoundExpression", "c", "d"], "e"]
- assert chain("a[b,c;,d]") == ["a", "b", ["CompoundExpression", "c", "Null"], "d"]
- # New lines
- assert chain("a\nb\n") == ["CompoundExpression", "a", "b"]
- assert chain("a\n\nb\n (c \nd) \n") == ["CompoundExpression", "a", "b", ["Times", "c", "d"]]
- assert chain("\na; b\nc") == ["CompoundExpression", "a", "b", "c"]
- assert chain("a + \nb\n") == ["Plus", "a", "b"]
- assert chain("a\nb; c; d\n e; (f \n g); h + \n i") == ["CompoundExpression", "a", "b", "c", "d", "e", ["Times", "f", "g"], ["Plus", "h", "i"]]
- assert chain("\n{\na\nb; c; d\n e (f \n g); h + \n i\n\n}\n") == ["List", ["CompoundExpression", ["Times", "a", "b"], "c", ["Times", "d", "e", ["Times", "f", "g"]], ["Plus", "h", "i"]]]
- # Patterns
- assert chain("y_") == ["Pattern", "y", ["Blank"]]
- assert chain("y_.") == ["Optional", ["Pattern", "y", ["Blank"]]]
- assert chain("y__") == ["Pattern", "y", ["BlankSequence"]]
- assert chain("y___") == ["Pattern", "y", ["BlankNullSequence"]]
- assert chain("a[b_.,c_]") == ["a", ["Optional", ["Pattern", "b", ["Blank"]]], ["Pattern", "c", ["Blank"]]]
- assert chain("b_. c") == ["Times", ["Optional", ["Pattern", "b", ["Blank"]]], "c"]
- # Slots for lambda functions
- assert chain("#") == ["Slot", "1"]
- assert chain("#3") == ["Slot", "3"]
- assert chain("#n") == ["Slot", "n"]
- assert chain("##") == ["SlotSequence", "1"]
- assert chain("##a") == ["SlotSequence", "a"]
- # Lambda functions
- assert chain("x&") == ["Function", "x"]
- assert chain("#&") == ["Function", ["Slot", "1"]]
- assert chain("#+3&") == ["Function", ["Plus", ["Slot", "1"], "3"]]
- assert chain("#1 + #2&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]]
- assert chain("# + #&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "1"]]]
- assert chain("#&[x]") == [["Function", ["Slot", "1"]], "x"]
- assert chain("#1 + #2 & [x, y]") == [["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]], "x", "y"]
- assert chain("#1^2#2^3&") == ["Function", ["Times", ["Power", ["Slot", "1"], "2"], ["Power", ["Slot", "2"], "3"]]]
- # Strings inside Mathematica expressions:
- assert chain('"abc"') == ["_Str", "abc"]
- assert chain('"a\\"b"') == ["_Str", 'a"b']
- # This expression does not make sense mathematically, it's just testing the parser:
- assert chain('x + "abc" ^ 3') == ["Plus", "x", ["Power", ["_Str", "abc"], "3"]]
- assert chain('"a (* b *) c"') == ["_Str", "a (* b *) c"]
- assert chain('"a" (* b *) ') == ["_Str", "a"]
- assert chain('"a [ b] "') == ["_Str", "a [ b] "]
- raises(SyntaxError, lambda: chain('"'))
- raises(SyntaxError, lambda: chain('"\\"'))
- raises(SyntaxError, lambda: chain('"abc'))
- raises(SyntaxError, lambda: chain('"abc\\"def'))
- # Invalid expressions:
- raises(SyntaxError, lambda: chain("(,"))
- raises(SyntaxError, lambda: chain("()"))
- raises(SyntaxError, lambda: chain("a (* b"))
- def test_parser_mathematica_exp_alt():
- parser = MathematicaParser()
- convert_chain2 = lambda expr: parser._from_fullformlist_to_fullformsympy(parser._from_fullform_to_fullformlist(expr))
- convert_chain3 = lambda expr: parser._from_fullformsympy_to_sympy(convert_chain2(expr))
- Sin, Times, Plus, Power = symbols("Sin Times Plus Power", cls=Function)
- full_form1 = "Sin[Times[x, y]]"
- full_form2 = "Plus[Times[x, y], z]"
- full_form3 = "Sin[Times[x, Plus[y, z], Power[w, n]]]]"
- assert parser._from_fullform_to_fullformlist(full_form1) == ["Sin", ["Times", "x", "y"]]
- assert parser._from_fullform_to_fullformlist(full_form2) == ["Plus", ["Times", "x", "y"], "z"]
- assert parser._from_fullform_to_fullformlist(full_form3) == ["Sin", ["Times", "x", ["Plus", "y", "z"], ["Power", "w", "n"]]]
- assert convert_chain2(full_form1) == Sin(Times(x, y))
- assert convert_chain2(full_form2) == Plus(Times(x, y), z)
- assert convert_chain2(full_form3) == Sin(Times(x, Plus(y, z), Power(w, n)))
- assert convert_chain3(full_form1) == sin(x*y)
- assert convert_chain3(full_form2) == x*y + z
- assert convert_chain3(full_form3) == sin(x*(y + z)*w**n)
|