123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- from sympy.testing.pytest import raises, XFAIL
- from sympy.external import import_module
- from sympy.concrete.products import Product
- from sympy.concrete.summations import Sum
- from sympy.core.add import Add
- from sympy.core.function import (Derivative, Function)
- from sympy.core.mul import Mul
- from sympy.core.numbers import (E, oo)
- from sympy.core.power import Pow
- from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality)
- from sympy.core.symbol import Symbol
- from sympy.functions.combinatorial.factorials import (binomial, factorial)
- from sympy.functions.elementary.complexes import (Abs, conjugate)
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.integers import (ceiling, floor)
- from sympy.functions.elementary.miscellaneous import (root, sqrt)
- from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan)
- from sympy.integrals.integrals import Integral
- from sympy.series.limits import Limit
- from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge
- from sympy.physics.quantum.state import Bra, Ket
- from sympy.abc import x, y, z, a, b, c, t, k, n
- antlr4 = import_module("antlr4")
- # disable tests if antlr4-python3-runtime is not present
- if not antlr4:
- disabled = True
- theta = Symbol('theta')
- f = Function('f')
- # shorthand definitions
- def _Add(a, b):
- return Add(a, b, evaluate=False)
- def _Mul(a, b):
- return Mul(a, b, evaluate=False)
- def _Pow(a, b):
- return Pow(a, b, evaluate=False)
- def _Sqrt(a):
- return sqrt(a, evaluate=False)
- def _Conjugate(a):
- return conjugate(a, evaluate=False)
- def _Abs(a):
- return Abs(a, evaluate=False)
- def _factorial(a):
- return factorial(a, evaluate=False)
- def _exp(a):
- return exp(a, evaluate=False)
- def _log(a, b):
- return log(a, b, evaluate=False)
- def _binomial(n, k):
- return binomial(n, k, evaluate=False)
- def test_import():
- from sympy.parsing.latex._build_latex_antlr import (
- build_parser,
- check_antlr_version,
- dir_latex_antlr
- )
- # XXX: It would be better to come up with a test for these...
- del build_parser, check_antlr_version, dir_latex_antlr
- # These LaTeX strings should parse to the corresponding SymPy expression
- GOOD_PAIRS = [
- (r"0", 0),
- (r"1", 1),
- (r"-3.14", -3.14),
- (r"(-7.13)(1.5)", _Mul(-7.13, 1.5)),
- (r"x", x),
- (r"2x", 2*x),
- (r"x^2", x**2),
- (r"x^\frac{1}{2}", _Pow(x, _Pow(2, -1))),
- (r"x^{3 + 1}", x**_Add(3, 1)),
- (r"-c", -c),
- (r"a \cdot b", a * b),
- (r"a / b", a / b),
- (r"a \div b", a / b),
- (r"a + b", a + b),
- (r"a + b - a", _Add(a+b, -a)),
- (r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
- (r"(x + y) z", _Mul(_Add(x, y), z)),
- (r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'")))),
- (r"y''_1", Symbol("y_{1}''")),
- (r"y_1''", Symbol("y_{1}''")),
- (r"\left(x + y\right) z", _Mul(_Add(x, y), z)),
- (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
- (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
- (r"\left[x + y\right] z", _Mul(_Add(x, y), z)),
- (r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)),
- (r"1+1", _Add(1, 1)),
- (r"0+1", _Add(0, 1)),
- (r"1*2", _Mul(1, 2)),
- (r"0*1", _Mul(0, 1)),
- (r"1 \times 2 ", _Mul(1, 2)),
- (r"x = y", Eq(x, y)),
- (r"x \neq y", Ne(x, y)),
- (r"x < y", Lt(x, y)),
- (r"x > y", Gt(x, y)),
- (r"x \leq y", Le(x, y)),
- (r"x \geq y", Ge(x, y)),
- (r"x \le y", Le(x, y)),
- (r"x \ge y", Ge(x, y)),
- (r"\lfloor x \rfloor", floor(x)),
- (r"\lceil x \rceil", ceiling(x)),
- (r"\langle x |", Bra('x')),
- (r"| x \rangle", Ket('x')),
- (r"\sin \theta", sin(theta)),
- (r"\sin(\theta)", sin(theta)),
- (r"\sin^{-1} a", asin(a)),
- (r"\sin a \cos b", _Mul(sin(a), cos(b))),
- (r"\sin \cos \theta", sin(cos(theta))),
- (r"\sin(\cos \theta)", sin(cos(theta))),
- (r"\frac{a}{b}", a / b),
- (r"\dfrac{a}{b}", a / b),
- (r"\tfrac{a}{b}", a / b),
- (r"\frac12", _Pow(2, -1)),
- (r"\frac12y", _Mul(_Pow(2, -1), y)),
- (r"\frac1234", _Mul(_Pow(2, -1), 34)),
- (r"\frac2{3}", _Mul(2, _Pow(3, -1))),
- (r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1))),
- (r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
- (r"\frac{7}{3}", _Mul(7, _Pow(3, -1))),
- (r"(\csc x)(\sec y)", csc(x)*sec(y)),
- (r"\lim_{x \to 3} a", Limit(a, x, 3, dir='+-')),
- (r"\lim_{x \rightarrow 3} a", Limit(a, x, 3, dir='+-')),
- (r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3, dir='+-')),
- (r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3, dir='+-')),
- (r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3, dir='+-')),
- (r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')),
- (r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')),
- (r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir='+')),
- (r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir='-')),
- (r"\infty", oo),
- (r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)),
- (r"\frac{d}{dx} x", Derivative(x, x)),
- (r"\frac{d}{dt} x", Derivative(x, t)),
- (r"f(x)", f(x)),
- (r"f(x, y)", f(x, y)),
- (r"f(x, y, z)", f(x, y, z)),
- (r"f'_1(x)", Function("f_{1}'")(x)),
- (r"f_{1}''(x+y)", Function("f_{1}''")(x+y)),
- (r"\frac{d f(x)}{dx}", Derivative(f(x), x)),
- (r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)),
- (r"x \neq y", Unequality(x, y)),
- (r"|x|", _Abs(x)),
- (r"||x||", _Abs(Abs(x))),
- (r"|x||y|", _Abs(x)*_Abs(y)),
- (r"||x||y||", _Abs(_Abs(x)*_Abs(y))),
- (r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)),
- (r"\int x dx", Integral(x, x)),
- (r"\int x d\theta", Integral(x, theta)),
- (r"\int (x^2 - y)dx", Integral(x**2 - y, x)),
- (r"\int x + a dx", Integral(_Add(x, a), x)),
- (r"\int da", Integral(1, a)),
- (r"\int_0^7 dx", Integral(1, (x, 0, 7))),
- (r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))),
- (r"\int_a^b x dx", Integral(x, (x, a, b))),
- (r"\int^b_a x dx", Integral(x, (x, a, b))),
- (r"\int_{a}^b x dx", Integral(x, (x, a, b))),
- (r"\int^{b}_a x dx", Integral(x, (x, a, b))),
- (r"\int_{a}^{b} x dx", Integral(x, (x, a, b))),
- (r"\int^{b}_{a} x dx", Integral(x, (x, a, b))),
- (r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
- (r"\int (x+a)", Integral(_Add(x, a), x)),
- (r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)),
- (r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)),
- (r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)),
- (r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)),
- (r"\int \frac{1}{a} + \frac{1}{b} dx",
- Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)),
- (r"\int \frac{3 \cdot d\theta}{\theta}",
- Integral(3*_Pow(theta, -1), theta)),
- (r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)),
- (r"x_0", Symbol('x_{0}')),
- (r"x_{1}", Symbol('x_{1}')),
- (r"x_a", Symbol('x_{a}')),
- (r"x_{b}", Symbol('x_{b}')),
- (r"h_\theta", Symbol('h_{theta}')),
- (r"h_{\theta}", Symbol('h_{theta}')),
- (r"h_{\theta}(x_0, x_1)",
- Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))),
- (r"x!", _factorial(x)),
- (r"100!", _factorial(100)),
- (r"\theta!", _factorial(theta)),
- (r"(x + 1)!", _factorial(_Add(x, 1))),
- (r"(x!)!", _factorial(_factorial(x))),
- (r"x!!!", _factorial(_factorial(_factorial(x)))),
- (r"5!7!", _Mul(_factorial(5), _factorial(7))),
- (r"\sqrt{x}", sqrt(x)),
- (r"\sqrt{x + b}", sqrt(_Add(x, b))),
- (r"\sqrt[3]{\sin x}", root(sin(x), 3)),
- (r"\sqrt[y]{\sin x}", root(sin(x), y)),
- (r"\sqrt[\theta]{\sin x}", root(sin(x), theta)),
- (r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))),
- (r"\overline{z}", _Conjugate(z)),
- (r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))),
- (r"\overline{x + y}", _Conjugate(_Add(x, y))),
- (r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)),
- (r"x < y", StrictLessThan(x, y)),
- (r"x \leq y", LessThan(x, y)),
- (r"x > y", StrictGreaterThan(x, y)),
- (r"x \geq y", GreaterThan(x, y)),
- (r"\mathit{x}", Symbol('x')),
- (r"\mathit{test}", Symbol('test')),
- (r"\mathit{TEST}", Symbol('TEST')),
- (r"\mathit{HELLO world}", Symbol('HELLO world')),
- (r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
- (r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
- (r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
- (r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
- (r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))),
- (r"\sum_{n = 0}^{\infty} \frac{1}{n!}",
- Sum(_Pow(_factorial(n), -1), (n, 0, oo))),
- (r"\prod_{a = b}^{c} x", Product(x, (a, b, c))),
- (r"\prod_{a = b}^c x", Product(x, (a, b, c))),
- (r"\prod^{c}_{a = b} x", Product(x, (a, b, c))),
- (r"\prod^c_{a = b} x", Product(x, (a, b, c))),
- (r"\exp x", _exp(x)),
- (r"\exp(x)", _exp(x)),
- (r"\lg x", _log(x, 10)),
- (r"\ln x", _log(x, E)),
- (r"\ln xy", _log(x*y, E)),
- (r"\log x", _log(x, E)),
- (r"\log xy", _log(x*y, E)),
- (r"\log_{2} x", _log(x, 2)),
- (r"\log_{a} x", _log(x, a)),
- (r"\log_{11} x", _log(x, 11)),
- (r"\log_{a^2} x", _log(x, _Pow(a, 2))),
- (r"[x]", x),
- (r"[a + b]", _Add(a, b)),
- (r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)),
- (r"\binom{n}{k}", _binomial(n, k)),
- (r"\tbinom{n}{k}", _binomial(n, k)),
- (r"\dbinom{n}{k}", _binomial(n, k)),
- (r"\binom{n}{0}", _binomial(n, 0)),
- (r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))),
- (r"a \, b", _Mul(a, b)),
- (r"a \thinspace b", _Mul(a, b)),
- (r"a \: b", _Mul(a, b)),
- (r"a \medspace b", _Mul(a, b)),
- (r"a \; b", _Mul(a, b)),
- (r"a \thickspace b", _Mul(a, b)),
- (r"a \quad b", _Mul(a, b)),
- (r"a \qquad b", _Mul(a, b)),
- (r"a \! b", _Mul(a, b)),
- (r"a \negthinspace b", _Mul(a, b)),
- (r"a \negmedspace b", _Mul(a, b)),
- (r"a \negthickspace b", _Mul(a, b)),
- (r"\int x \, dx", Integral(x, x)),
- (r"\log_2 x", _log(x, 2)),
- (r"\log_a x", _log(x, a)),
- (r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))),
- (r"3x - 1", _Add(_Mul(3, x), -1))
- ]
- def test_parseable():
- from sympy.parsing.latex import parse_latex
- for latex_str, sympy_expr in GOOD_PAIRS:
- assert parse_latex(latex_str) == sympy_expr, latex_str
- # These bad LaTeX strings should raise a LaTeXParsingError when parsed
- BAD_STRINGS = [
- r"(",
- r")",
- r"\frac{d}{dx}",
- r"(\frac{d}{dx})",
- r"\sqrt{}",
- r"\sqrt",
- r"\overline{}",
- r"\overline",
- r"{",
- r"}",
- r"\mathit{x + y}",
- r"\mathit{21}",
- r"\frac{2}{}",
- r"\frac{}{2}",
- r"\int",
- r"!",
- r"!0",
- r"_",
- r"^",
- r"|",
- r"||x|",
- r"()",
- r"((((((((((((((((()))))))))))))))))",
- r"-",
- r"\frac{d}{dx} + \frac{d}{dt}",
- r"f(x,,y)",
- r"f(x,y,",
- r"\sin^x",
- r"\cos^2",
- r"@",
- r"#",
- r"$",
- r"%",
- r"&",
- r"*",
- r"" "\\",
- r"~",
- r"\frac{(2 + x}{1 - x)}",
- ]
- def test_not_parseable():
- from sympy.parsing.latex import parse_latex, LaTeXParsingError
- for latex_str in BAD_STRINGS:
- with raises(LaTeXParsingError):
- parse_latex(latex_str)
- # At time of migration from latex2sympy, should fail but doesn't
- FAILING_BAD_STRINGS = [
- r"\cos 1 \cos",
- r"f(,",
- r"f()",
- r"a \div \div b",
- r"a \cdot \cdot b",
- r"a // b",
- r"a +",
- r"1.1.1",
- r"1 +",
- r"a / b /",
- ]
- @XFAIL
- def test_failing_not_parseable():
- from sympy.parsing.latex import parse_latex, LaTeXParsingError
- for latex_str in FAILING_BAD_STRINGS:
- with raises(LaTeXParsingError):
- parse_latex(latex_str)
|