123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- import os
- from sympy.functions.elementary.trigonometric import (cos, sin)
- from sympy.external import import_module
- from sympy.testing.pytest import skip
- from sympy.parsing.autolev import parse_autolev
- antlr4 = import_module("antlr4")
- if not antlr4:
- disabled = True
- FILE_DIR = os.path.dirname(
- os.path.dirname(os.path.abspath(os.path.realpath(__file__))))
- def _test_examples(in_filename, out_filename, test_name=""):
- in_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
- in_filename)
- correct_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
- out_filename)
- with open(in_file_path) as f:
- generated_code = parse_autolev(f, include_numeric=True)
- with open(correct_file_path) as f:
- for idx, line1 in enumerate(f):
- if line1.startswith("#"):
- break
- try:
- line2 = generated_code.split('\n')[idx]
- assert line1.rstrip() == line2.rstrip()
- except Exception:
- msg = 'mismatch in ' + test_name + ' in line no: {0}'
- raise AssertionError(msg.format(idx+1))
- def test_rule_tests():
- l = ["ruletest1", "ruletest2", "ruletest3", "ruletest4", "ruletest5",
- "ruletest6", "ruletest7", "ruletest8", "ruletest9", "ruletest10",
- "ruletest11", "ruletest12"]
- for i in l:
- in_filepath = i + ".al"
- out_filepath = i + ".py"
- _test_examples(in_filepath, out_filepath, i)
- def test_pydy_examples():
- l = ["mass_spring_damper", "chaos_pendulum", "double_pendulum",
- "non_min_pendulum"]
- for i in l:
- in_filepath = os.path.join("pydy-example-repo", i + ".al")
- out_filepath = os.path.join("pydy-example-repo", i + ".py")
- _test_examples(in_filepath, out_filepath, i)
- def test_autolev_tutorial():
- dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
- 'autolev-tutorial')
- if os.path.isdir(dir_path):
- l = ["tutor1", "tutor2", "tutor3", "tutor4", "tutor5", "tutor6",
- "tutor7"]
- for i in l:
- in_filepath = os.path.join("autolev-tutorial", i + ".al")
- out_filepath = os.path.join("autolev-tutorial", i + ".py")
- _test_examples(in_filepath, out_filepath, i)
- def test_dynamics_online():
- dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples',
- 'dynamics-online')
- if os.path.isdir(dir_path):
- ch1 = ["1-4", "1-5", "1-6", "1-7", "1-8", "1-9_1", "1-9_2", "1-9_3"]
- ch2 = ["2-1", "2-2", "2-3", "2-4", "2-5", "2-6", "2-7", "2-8", "2-9",
- "circular"]
- ch3 = ["3-1_1", "3-1_2", "3-2_1", "3-2_2", "3-2_3", "3-2_4", "3-2_5",
- "3-3"]
- ch4 = ["4-1_1", "4-2_1", "4-4_1", "4-4_2", "4-5_1", "4-5_2"]
- chapters = [(ch1, "ch1"), (ch2, "ch2"), (ch3, "ch3"), (ch4, "ch4")]
- for ch, name in chapters:
- for i in ch:
- in_filepath = os.path.join("dynamics-online", name, i + ".al")
- out_filepath = os.path.join("dynamics-online", name, i + ".py")
- _test_examples(in_filepath, out_filepath, i)
- def test_output_01():
- """Autolev example calculates the position, velocity, and acceleration of a
- point and expresses in a single reference frame::
- (1) FRAMES C,D,F
- (2) VARIABLES FD'',DC''
- (3) CONSTANTS R,L
- (4) POINTS O,E
- (5) SIMPROT(F,D,1,FD)
- -> (6) F_D = [1, 0, 0; 0, COS(FD), -SIN(FD); 0, SIN(FD), COS(FD)]
- (7) SIMPROT(D,C,2,DC)
- -> (8) D_C = [COS(DC), 0, SIN(DC); 0, 1, 0; -SIN(DC), 0, COS(DC)]
- (9) W_C_F> = EXPRESS(W_C_F>, F)
- -> (10) W_C_F> = FD'*F1> + COS(FD)*DC'*F2> + SIN(FD)*DC'*F3>
- (11) P_O_E>=R*D2>-L*C1>
- (12) P_O_E>=EXPRESS(P_O_E>, D)
- -> (13) P_O_E> = -L*COS(DC)*D1> + R*D2> + L*SIN(DC)*D3>
- (14) V_E_F>=EXPRESS(DT(P_O_E>,F),D)
- -> (15) V_E_F> = L*SIN(DC)*DC'*D1> - L*SIN(DC)*FD'*D2> + (R*FD'+L*COS(DC)*DC')*D3>
- (16) A_E_F>=EXPRESS(DT(V_E_F>,F),D)
- -> (17) A_E_F> = L*(COS(DC)*DC'^2+SIN(DC)*DC'')*D1> + (-R*FD'^2-2*L*COS(DC)*DC'*FD'-L*SIN(DC)*FD'')*D2> + (R*FD''+L*COS(DC)*DC''-L*SIN(DC)*DC'^2-L*SIN(DC)*FD'^2)*D3>
- """
- if not antlr4:
- skip('Test skipped: antlr4 is not installed.')
- autolev_input = """\
- FRAMES C,D,F
- VARIABLES FD'',DC''
- CONSTANTS R,L
- POINTS O,E
- SIMPROT(F,D,1,FD)
- SIMPROT(D,C,2,DC)
- W_C_F>=EXPRESS(W_C_F>,F)
- P_O_E>=R*D2>-L*C1>
- P_O_E>=EXPRESS(P_O_E>,D)
- V_E_F>=EXPRESS(DT(P_O_E>,F),D)
- A_E_F>=EXPRESS(DT(V_E_F>,F),D)\
- """
- sympy_input = parse_autolev(autolev_input)
- g = {}
- l = {}
- exec(sympy_input, g, l)
- w_c_f = l['frame_c'].ang_vel_in(l['frame_f'])
- # P_O_E> means "the position of point E wrt to point O"
- p_o_e = l['point_e'].pos_from(l['point_o'])
- v_e_f = l['point_e'].vel(l['frame_f'])
- a_e_f = l['point_e'].acc(l['frame_f'])
- # NOTE : The Autolev outputs above were manually transformed into
- # equivalent SymPy physics vector expressions. Would be nice to automate
- # this transformation.
- expected_w_c_f = (l['fd'].diff()*l['frame_f'].x +
- cos(l['fd'])*l['dc'].diff()*l['frame_f'].y +
- sin(l['fd'])*l['dc'].diff()*l['frame_f'].z)
- assert (w_c_f - expected_w_c_f).simplify() == 0
- expected_p_o_e = (-l['l']*cos(l['dc'])*l['frame_d'].x +
- l['r']*l['frame_d'].y +
- l['l']*sin(l['dc'])*l['frame_d'].z)
- assert (p_o_e - expected_p_o_e).simplify() == 0
- expected_v_e_f = (l['l']*sin(l['dc'])*l['dc'].diff()*l['frame_d'].x -
- l['l']*sin(l['dc'])*l['fd'].diff()*l['frame_d'].y +
- (l['r']*l['fd'].diff() +
- l['l']*cos(l['dc'])*l['dc'].diff())*l['frame_d'].z)
- assert (v_e_f - expected_v_e_f).simplify() == 0
- expected_a_e_f = (l['l']*(cos(l['dc'])*l['dc'].diff()**2 +
- sin(l['dc'])*l['dc'].diff().diff())*l['frame_d'].x +
- (-l['r']*l['fd'].diff()**2 -
- 2*l['l']*cos(l['dc'])*l['dc'].diff()*l['fd'].diff() -
- l['l']*sin(l['dc'])*l['fd'].diff().diff())*l['frame_d'].y +
- (l['r']*l['fd'].diff().diff() +
- l['l']*cos(l['dc'])*l['dc'].diff().diff() -
- l['l']*sin(l['dc'])*l['dc'].diff()**2 -
- l['l']*sin(l['dc'])*l['fd'].diff()**2)*l['frame_d'].z)
- assert (a_e_f - expected_a_e_f).simplify() == 0
|