123456789101112131415161718192021222324252627282930313233343536 |
- import sympy.physics.mechanics as _me
- import sympy as _sm
- import math as m
- import numpy as _np
- q1, q2 = _me.dynamicsymbols('q1 q2')
- x, y, z = _me.dynamicsymbols('x y z')
- e = q1+q2
- a = (e).subs({q1:x**2+y**2, q2:x-y})
- e2 = _sm.cos(x)
- e3 = _sm.cos(x*y)
- a = (e2).series(x, 0, 2).removeO()
- b = (e3).series(x, 0, 2).removeO().series(y, 0, 2).removeO()
- e = ((x+y)**2).expand()
- a = (e).subs({q1:x**2+y**2,q2:x-y}).subs({x:1,y:z})
- bm = _sm.Matrix([i.subs({x:1,y:z}) for i in _sm.Matrix([e,2*e]).reshape(2, 1)]).reshape((_sm.Matrix([e,2*e]).reshape(2, 1)).shape[0], (_sm.Matrix([e,2*e]).reshape(2, 1)).shape[1])
- e = q1+q2
- a = (e).subs({q1:x**2+y**2,q2:x-y}).subs({x:2,y:z**2})
- j, k, l = _sm.symbols('j k l', real=True)
- p1 = _sm.Poly(_sm.Matrix([j,k,l]).reshape(1, 3), x)
- p2 = _sm.Poly(j*x+k, x)
- root1 = [i.evalf() for i in _sm.solve(p1, x)]
- root2 = [i.evalf() for i in _sm.solve(_sm.Poly(_sm.Matrix([1,2,3]).reshape(3, 1), x),x)]
- m = _sm.Matrix([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).reshape(4, 4)
- am = (m).T+m
- bm = _sm.Matrix([i.evalf() for i in (m).eigenvals().keys()])
- c1 = _sm.diag(1,1,1,1)
- c2 = _sm.Matrix([2 if i==j else 0 for i in range(3) for j in range(4)]).reshape(3, 4)
- dm = (m+c1)**(-1)
- e = (m+c1).det()+(_sm.Matrix([1,0,0,1]).reshape(2, 2)).trace()
- f = (m)[1,2]
- a = (m).cols
- bm = (m).col(0)
- cm = _sm.Matrix([(m).T.row(0),(m).T.row(1),(m).T.row(2),(m).T.row(3),(m).T.row(2)])
- dm = (m).row(0)
- em = _sm.Matrix([(m).row(0),(m).row(1),(m).row(2),(m).row(3),(m).row(2)])
|