123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- from sympy.ntheory.generate import Sieve, sieve
- from sympy.ntheory.primetest import (mr, is_lucas_prp, is_square,
- is_strong_lucas_prp, is_extra_strong_lucas_prp, isprime, is_euler_pseudoprime,
- is_gaussian_prime)
- from sympy.testing.pytest import slow
- from sympy.core.numbers import I
- def test_euler_pseudoprimes():
- assert is_euler_pseudoprime(9, 1) == True
- assert is_euler_pseudoprime(341, 2) == False
- assert is_euler_pseudoprime(121, 3) == True
- assert is_euler_pseudoprime(341, 4) == True
- assert is_euler_pseudoprime(217, 5) == False
- assert is_euler_pseudoprime(185, 6) == False
- assert is_euler_pseudoprime(55, 111) == True
- assert is_euler_pseudoprime(115, 114) == True
- assert is_euler_pseudoprime(49, 117) == True
- assert is_euler_pseudoprime(85, 84) == True
- assert is_euler_pseudoprime(87, 88) == True
- assert is_euler_pseudoprime(49, 128) == True
- assert is_euler_pseudoprime(39, 77) == True
- assert is_euler_pseudoprime(9881, 30) == True
- assert is_euler_pseudoprime(8841, 29) == False
- assert is_euler_pseudoprime(8421, 29) == False
- assert is_euler_pseudoprime(9997, 19) == True
- def test_is_extra_strong_lucas_prp():
- assert is_extra_strong_lucas_prp(4) == False
- assert is_extra_strong_lucas_prp(989) == True
- assert is_extra_strong_lucas_prp(10877) == True
- assert is_extra_strong_lucas_prp(9) == False
- assert is_extra_strong_lucas_prp(16) == False
- assert is_extra_strong_lucas_prp(169) == False
- @slow
- def test_prps():
- oddcomposites = [n for n in range(1, 10**5) if
- n % 2 and not isprime(n)]
- # A checksum would be better.
- assert sum(oddcomposites) == 2045603465
- assert [n for n in oddcomposites if mr(n, [2])] == [
- 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
- 52633, 65281, 74665, 80581, 85489, 88357, 90751]
- assert [n for n in oddcomposites if mr(n, [3])] == [
- 121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
- 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
- 74593, 79003, 82513, 87913, 88573, 97567]
- assert [n for n in oddcomposites if mr(n, [325])] == [
- 9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
- 2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
- 12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
- 24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
- 55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
- 76793, 78409, 85879]
- assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
- assert [n for n in oddcomposites if is_lucas_prp(n)] == [
- 323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
- 11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
- 19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
- 32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
- 46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
- 63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
- 82983, 84419, 86063, 90287, 94667, 97019, 97439]
- assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
- 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
- 58519, 75077, 97439]
- assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
- ] == [
- 989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
- 72389, 73919, 75077]
- def test_isprime():
- s = Sieve()
- s.extend(100000)
- ps = set(s.primerange(2, 100001))
- for n in range(100001):
- # if (n in ps) != isprime(n): print n
- assert (n in ps) == isprime(n)
- assert isprime(179424673)
- assert isprime(20678048681)
- assert isprime(1968188556461)
- assert isprime(2614941710599)
- assert isprime(65635624165761929287)
- assert isprime(1162566711635022452267983)
- assert isprime(77123077103005189615466924501)
- assert isprime(3991617775553178702574451996736229)
- assert isprime(273952953553395851092382714516720001799)
- assert isprime(int('''
- 531137992816767098689588206552468627329593117727031923199444138200403\
- 559860852242739162502265229285668889329486246501015346579337652707239\
- 409519978766587351943831270835393219031728127'''))
- # Some Mersenne primes
- assert isprime(2**61 - 1)
- assert isprime(2**89 - 1)
- assert isprime(2**607 - 1)
- # (but not all Mersenne's are primes
- assert not isprime(2**601 - 1)
- # pseudoprimes
- #-------------
- # to some small bases
- assert not isprime(2152302898747)
- assert not isprime(3474749660383)
- assert not isprime(341550071728321)
- assert not isprime(3825123056546413051)
- # passes the base set [2, 3, 7, 61, 24251]
- assert not isprime(9188353522314541)
- # large examples
- assert not isprime(877777777777777777777777)
- # conjectured psi_12 given at http://mathworld.wolfram.com/StrongPseudoprime.html
- assert not isprime(318665857834031151167461)
- # conjectured psi_17 given at http://mathworld.wolfram.com/StrongPseudoprime.html
- assert not isprime(564132928021909221014087501701)
- # Arnault's 1993 number; a factor of it is
- # 400958216639499605418306452084546853005188166041132508774506\
- # 204738003217070119624271622319159721973358216316508535816696\
- # 9145233813917169287527980445796800452592031836601
- assert not isprime(int('''
- 803837457453639491257079614341942108138837688287558145837488917522297\
- 427376533365218650233616396004545791504202360320876656996676098728404\
- 396540823292873879185086916685732826776177102938969773947016708230428\
- 687109997439976544144845341155872450633409279022275296229414984230688\
- 1685404326457534018329786111298960644845216191652872597534901'''))
- # Arnault's 1995 number; can be factored as
- # p1*(313*(p1 - 1) + 1)*(353*(p1 - 1) + 1) where p1 is
- # 296744956686855105501541746429053327307719917998530433509950\
- # 755312768387531717701995942385964281211880336647542183455624\
- # 93168782883
- assert not isprime(int('''
- 288714823805077121267142959713039399197760945927972270092651602419743\
- 230379915273311632898314463922594197780311092934965557841894944174093\
- 380561511397999942154241693397290542371100275104208013496673175515285\
- 922696291677532547504444585610194940420003990443211677661994962953925\
- 045269871932907037356403227370127845389912612030924484149472897688540\
- 6024976768122077071687938121709811322297802059565867'''))
- sieve.extend(3000)
- assert isprime(2819)
- assert not isprime(2931)
- assert not isprime(2.0)
- def test_is_square():
- assert [i for i in range(25) if is_square(i)] == [0, 1, 4, 9, 16]
- # issue #17044
- assert not is_square(60 ** 3)
- assert not is_square(60 ** 5)
- assert not is_square(84 ** 7)
- assert not is_square(105 ** 9)
- assert not is_square(120 ** 3)
- def test_is_gaussianprime():
- assert is_gaussian_prime(7*I)
- assert is_gaussian_prime(7)
- assert is_gaussian_prime(2 + 3*I)
- assert not is_gaussian_prime(2 + 2*I)
|