123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- from sympy.core.numbers import (I, Rational, nan, zoo)
- from sympy.core.singleton import S
- from sympy.core.symbol import Symbol
- from sympy.ntheory.generate import (sieve, Sieve)
- from sympy.series.limits import limit
- from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \
- primerange, primepi, prime, primorial, composite, compositepi, reduced_totient
- from sympy.ntheory.generate import cycle_length
- from sympy.ntheory.primetest import mr
- from sympy.testing.pytest import raises
- def test_prime():
- assert prime(1) == 2
- assert prime(2) == 3
- assert prime(5) == 11
- assert prime(11) == 31
- assert prime(57) == 269
- assert prime(296) == 1949
- assert prime(559) == 4051
- assert prime(3000) == 27449
- assert prime(4096) == 38873
- assert prime(9096) == 94321
- assert prime(25023) == 287341
- assert prime(10000000) == 179424673 # issue #20951
- assert prime(99999999) == 2038074739
- raises(ValueError, lambda: prime(0))
- sieve.extend(3000)
- assert prime(401) == 2749
- raises(ValueError, lambda: prime(-1))
- def test_primepi():
- assert primepi(-1) == 0
- assert primepi(1) == 0
- assert primepi(2) == 1
- assert primepi(Rational(7, 2)) == 2
- assert primepi(3.5) == 2
- assert primepi(5) == 3
- assert primepi(11) == 5
- assert primepi(57) == 16
- assert primepi(296) == 62
- assert primepi(559) == 102
- assert primepi(3000) == 430
- assert primepi(4096) == 564
- assert primepi(9096) == 1128
- assert primepi(25023) == 2763
- assert primepi(10**8) == 5761455
- assert primepi(253425253) == 13856396
- assert primepi(8769575643) == 401464322
- sieve.extend(3000)
- assert primepi(2000) == 303
- n = Symbol('n')
- assert primepi(n).subs(n, 2) == 1
- r = Symbol('r', real=True)
- assert primepi(r).subs(r, 2) == 1
- assert primepi(S.Infinity) is S.Infinity
- assert primepi(S.NegativeInfinity) == 0
- assert limit(primepi(n), n, 100) == 25
- raises(ValueError, lambda: primepi(I))
- raises(ValueError, lambda: primepi(1 + I))
- raises(ValueError, lambda: primepi(zoo))
- raises(ValueError, lambda: primepi(nan))
- def test_composite():
- from sympy.ntheory.generate import sieve
- sieve._reset()
- assert composite(1) == 4
- assert composite(2) == 6
- assert composite(5) == 10
- assert composite(11) == 20
- assert composite(41) == 58
- assert composite(57) == 80
- assert composite(296) == 370
- assert composite(559) == 684
- assert composite(3000) == 3488
- assert composite(4096) == 4736
- assert composite(9096) == 10368
- assert composite(25023) == 28088
- sieve.extend(3000)
- assert composite(1957) == 2300
- assert composite(2568) == 2998
- raises(ValueError, lambda: composite(0))
- def test_compositepi():
- assert compositepi(1) == 0
- assert compositepi(2) == 0
- assert compositepi(5) == 1
- assert compositepi(11) == 5
- assert compositepi(57) == 40
- assert compositepi(296) == 233
- assert compositepi(559) == 456
- assert compositepi(3000) == 2569
- assert compositepi(4096) == 3531
- assert compositepi(9096) == 7967
- assert compositepi(25023) == 22259
- assert compositepi(10**8) == 94238544
- assert compositepi(253425253) == 239568856
- assert compositepi(8769575643) == 8368111320
- sieve.extend(3000)
- assert compositepi(2321) == 1976
- def test_generate():
- from sympy.ntheory.generate import sieve
- sieve._reset()
- assert nextprime(-4) == 2
- assert nextprime(2) == 3
- assert nextprime(5) == 7
- assert nextprime(12) == 13
- assert prevprime(3) == 2
- assert prevprime(7) == 5
- assert prevprime(13) == 11
- assert prevprime(19) == 17
- assert prevprime(20) == 19
- sieve.extend_to_no(9)
- assert sieve._list[-1] == 23
- assert sieve._list[-1] < 31
- assert 31 in sieve
- assert nextprime(90) == 97
- assert nextprime(10**40) == (10**40 + 121)
- assert prevprime(97) == 89
- assert prevprime(10**40) == (10**40 - 17)
- assert list(sieve.primerange(10, 1)) == []
- assert list(sieve.primerange(5, 9)) == [5, 7]
- sieve._reset(prime=True)
- assert list(sieve.primerange(2, 13)) == [2, 3, 5, 7, 11]
- assert list(sieve.primerange(13)) == [2, 3, 5, 7, 11]
- assert list(sieve.primerange(8)) == [2, 3, 5, 7]
- assert list(sieve.primerange(-2)) == []
- assert list(sieve.primerange(29)) == [2, 3, 5, 7, 11, 13, 17, 19, 23]
- assert list(sieve.primerange(34)) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
- assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
- sieve._reset(totient=True)
- assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
- assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
- assert list(sieve.totientrange(0, 1)) == []
- assert list(sieve.totientrange(1, 2)) == [1]
- assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
- sieve._reset(mobius=True)
- assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
- assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
- assert list(sieve.mobiusrange(0, 1)) == []
- assert list(sieve.mobiusrange(1, 2)) == [1]
- assert list(primerange(10, 1)) == []
- assert list(primerange(2, 7)) == [2, 3, 5]
- assert list(primerange(2, 10)) == [2, 3, 5, 7]
- assert list(primerange(1050, 1100)) == [1051, 1061,
- 1063, 1069, 1087, 1091, 1093, 1097]
- s = Sieve()
- for i in range(30, 2350, 376):
- for j in range(2, 5096, 1139):
- A = list(s.primerange(i, i + j))
- B = list(primerange(i, i + j))
- assert A == B
- s = Sieve()
- assert s[10] == 29
- assert nextprime(2, 2) == 5
- raises(ValueError, lambda: totient(0))
- raises(ValueError, lambda: reduced_totient(0))
- raises(ValueError, lambda: primorial(0))
- assert mr(1, [2]) is False
- func = lambda i: (i**2 + 1) % 51
- assert next(cycle_length(func, 4)) == (6, 2)
- assert list(cycle_length(func, 4, values=True)) == \
- [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
- assert next(cycle_length(func, 4, nmax=5)) == (5, None)
- assert list(cycle_length(func, 4, nmax=5, values=True)) == \
- [17, 35, 2, 5, 26]
- sieve.extend(3000)
- assert nextprime(2968) == 2969
- assert prevprime(2930) == 2927
- raises(ValueError, lambda: prevprime(1))
- raises(ValueError, lambda: prevprime(-4))
- def test_randprime():
- assert randprime(10, 1) is None
- assert randprime(3, -3) is None
- assert randprime(2, 3) == 2
- assert randprime(1, 3) == 2
- assert randprime(3, 5) == 3
- raises(ValueError, lambda: randprime(-12, -2))
- raises(ValueError, lambda: randprime(-10, 0))
- raises(ValueError, lambda: randprime(20, 22))
- raises(ValueError, lambda: randprime(0, 2))
- raises(ValueError, lambda: randprime(1, 2))
- for a in [100, 300, 500, 250000]:
- for b in [100, 300, 500, 250000]:
- p = randprime(a, a + b)
- assert a <= p < (a + b) and isprime(p)
- def test_primorial():
- assert primorial(1) == 2
- assert primorial(1, nth=0) == 1
- assert primorial(2) == 6
- assert primorial(2, nth=0) == 2
- assert primorial(4, nth=0) == 6
- def test_search():
- assert 2 in sieve
- assert 2.1 not in sieve
- assert 1 not in sieve
- assert 2**1000 not in sieve
- raises(ValueError, lambda: sieve.search(1))
- def test_sieve_slice():
- assert sieve[5] == 11
- assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)]
- assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)]
- assert list(sieve[1:5]) == [2, 3, 5, 7]
- raises(IndexError, lambda: sieve[:5])
- raises(IndexError, lambda: sieve[0])
- raises(IndexError, lambda: sieve[0:5])
- def test_sieve_iter():
- values = []
- for value in sieve:
- if value > 7:
- break
- values.append(value)
- assert values == list(sieve[1:5])
- def test_sieve_repr():
- assert "sieve" in repr(sieve)
- assert "prime" in repr(sieve)
|