123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from sympy.matrices.common import _MinimalMatrix, _CastableMatrix
- from sympy.matrices.matrices import MatrixSubspaces
- from sympy.matrices import Matrix
- from sympy.core.numbers import Rational
- from sympy.core.symbol import symbols
- from sympy.solvers import solve
- class SubspaceOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixSubspaces):
- pass
- # SubspaceOnlyMatrix tests
- def test_columnspace_one():
- m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5],
- [-2, -5, 1, -1, -8],
- [ 0, -3, 3, 4, 1],
- [ 3, 6, 0, -7, 2]])
- basis = m.columnspace()
- assert basis[0] == Matrix([1, -2, 0, 3])
- assert basis[1] == Matrix([2, -5, -3, 6])
- assert basis[2] == Matrix([2, -1, 4, -7])
- assert len(basis) == 3
- assert Matrix.hstack(m, *basis).columnspace() == basis
- def test_rowspace():
- m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5],
- [-2, -5, 1, -1, -8],
- [ 0, -3, 3, 4, 1],
- [ 3, 6, 0, -7, 2]])
- basis = m.rowspace()
- assert basis[0] == Matrix([[1, 2, 0, 2, 5]])
- assert basis[1] == Matrix([[0, -1, 1, 3, 2]])
- assert basis[2] == Matrix([[0, 0, 0, 5, 5]])
- assert len(basis) == 3
- def test_nullspace_one():
- m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5],
- [-2, -5, 1, -1, -8],
- [ 0, -3, 3, 4, 1],
- [ 3, 6, 0, -7, 2]])
- basis = m.nullspace()
- assert basis[0] == Matrix([-2, 1, 1, 0, 0])
- assert basis[1] == Matrix([-1, -1, 0, -1, 1])
- # make sure the null space is really gets zeroed
- assert all(e.is_zero for e in m*basis[0])
- assert all(e.is_zero for e in m*basis[1])
- def test_nullspace_second():
- # first test reduced row-ech form
- R = Rational
- M = Matrix([[5, 7, 2, 1],
- [1, 6, 2, -1]])
- out, tmp = M.rref()
- assert out == Matrix([[1, 0, -R(2)/23, R(13)/23],
- [0, 1, R(8)/23, R(-6)/23]])
- M = Matrix([[-5, -1, 4, -3, -1],
- [ 1, -1, -1, 1, 0],
- [-1, 0, 0, 0, 0],
- [ 4, 1, -4, 3, 1],
- [-2, 0, 2, -2, -1]])
- assert M*M.nullspace()[0] == Matrix(5, 1, [0]*5)
- M = Matrix([[ 1, 3, 0, 2, 6, 3, 1],
- [-2, -6, 0, -2, -8, 3, 1],
- [ 3, 9, 0, 0, 6, 6, 2],
- [-1, -3, 0, 1, 0, 9, 3]])
- out, tmp = M.rref()
- assert out == Matrix([[1, 3, 0, 0, 2, 0, 0],
- [0, 0, 0, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 1, R(1)/3],
- [0, 0, 0, 0, 0, 0, 0]])
- # now check the vectors
- basis = M.nullspace()
- assert basis[0] == Matrix([-3, 1, 0, 0, 0, 0, 0])
- assert basis[1] == Matrix([0, 0, 1, 0, 0, 0, 0])
- assert basis[2] == Matrix([-2, 0, 0, -2, 1, 0, 0])
- assert basis[3] == Matrix([0, 0, 0, 0, 0, R(-1)/3, 1])
- # issue 4797; just see that we can do it when rows > cols
- M = Matrix([[1, 2], [2, 4], [3, 6]])
- assert M.nullspace()
- def test_columnspace_second():
- M = Matrix([[ 1, 2, 0, 2, 5],
- [-2, -5, 1, -1, -8],
- [ 0, -3, 3, 4, 1],
- [ 3, 6, 0, -7, 2]])
- # now check the vectors
- basis = M.columnspace()
- assert basis[0] == Matrix([1, -2, 0, 3])
- assert basis[1] == Matrix([2, -5, -3, 6])
- assert basis[2] == Matrix([2, -1, 4, -7])
- #check by columnspace definition
- a, b, c, d, e = symbols('a b c d e')
- X = Matrix([a, b, c, d, e])
- for i in range(len(basis)):
- eq=M*X-basis[i]
- assert len(solve(eq, X)) != 0
- #check if rank-nullity theorem holds
- assert M.rank() == len(basis)
- assert len(M.nullspace()) + len(M.columnspace()) == M.cols
|