12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005 |
- import random
- import concurrent.futures
- from collections.abc import Hashable
- from sympy.core.add import Add
- from sympy.core.function import (Function, diff, expand)
- from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi)
- from sympy.core.power import Pow
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.core.sympify import sympify
- from sympy.functions.elementary.complexes import Abs
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
- from sympy.functions.elementary.trigonometric import (cos, sin, tan)
- from sympy.integrals.integrals import integrate
- from sympy.polys.polytools import (Poly, PurePoly)
- from sympy.printing.str import sstr
- from sympy.sets.sets import FiniteSet
- from sympy.simplify.simplify import (signsimp, simplify)
- from sympy.simplify.trigsimp import trigsimp
- from sympy.matrices.matrices import (ShapeError, MatrixError,
- NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive,
- _simplify)
- from sympy.matrices import (
- GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix,
- SparseMatrix, casoratian, diag, eye, hessian,
- matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2,
- rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix,
- MatrixSymbol, dotprodsimp, rot_ccw_axis1, rot_ccw_axis2, rot_ccw_axis3)
- from sympy.matrices.utilities import _dotprodsimp_state
- from sympy.core import Tuple, Wild
- from sympy.functions.special.tensor_functions import KroneckerDelta
- from sympy.utilities.iterables import flatten, capture, iterable
- from sympy.utilities.exceptions import ignore_warnings, SymPyDeprecationWarning
- from sympy.testing.pytest import (raises, XFAIL, slow, skip, skip_under_pyodide,
- warns_deprecated_sympy, warns)
- from sympy.assumptions import Q
- from sympy.tensor.array import Array
- from sympy.matrices.expressions import MatPow
- from sympy.algebras import Quaternion
- from sympy.abc import a, b, c, d, x, y, z, t
- # don't re-order this list
- classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix)
- def test_args():
- for n, cls in enumerate(classes):
- m = cls.zeros(3, 2)
- # all should give back the same type of arguments, e.g. ints for shape
- assert m.shape == (3, 2) and all(type(i) is int for i in m.shape)
- assert m.rows == 3 and type(m.rows) is int
- assert m.cols == 2 and type(m.cols) is int
- if not n % 2:
- assert type(m.flat()) in (list, tuple, Tuple)
- else:
- assert type(m.todok()) is dict
- def test_deprecated_mat_smat():
- for cls in Matrix, ImmutableMatrix:
- m = cls.zeros(3, 2)
- with warns_deprecated_sympy():
- mat = m._mat
- assert mat == m.flat()
- for cls in SparseMatrix, ImmutableSparseMatrix:
- m = cls.zeros(3, 2)
- with warns_deprecated_sympy():
- smat = m._smat
- assert smat == m.todok()
- def test_division():
- v = Matrix(1, 2, [x, y])
- assert v/z == Matrix(1, 2, [x/z, y/z])
- def test_sum():
- m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
- assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]])
- n = Matrix(1, 2, [1, 2])
- raises(ShapeError, lambda: m + n)
- def test_abs():
- m = Matrix(1, 2, [-3, x])
- n = Matrix(1, 2, [3, Abs(x)])
- assert abs(m) == n
- def test_addition():
- a = Matrix((
- (1, 2),
- (3, 1),
- ))
- b = Matrix((
- (1, 2),
- (3, 0),
- ))
- assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]])
- def test_fancy_index_matrix():
- for M in (Matrix, SparseMatrix):
- a = M(3, 3, range(9))
- assert a == a[:, :]
- assert a[1, :] == Matrix(1, 3, [3, 4, 5])
- assert a[:, 1] == Matrix([1, 4, 7])
- assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]])
- assert a[[0, 1], 2] == a[[0, 1], [2]]
- assert a[2, [0, 1]] == a[[2], [0, 1]]
- assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]])
- assert a[0, 0] == 0
- assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]])
- assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]])
- assert a[::2, 1] == a[[0, 2], 1]
- assert a[1, ::2] == a[1, [0, 2]]
- a = M(3, 3, range(9))
- assert a[[0, 2, 1, 2, 1], :] == Matrix([
- [0, 1, 2],
- [6, 7, 8],
- [3, 4, 5],
- [6, 7, 8],
- [3, 4, 5]])
- assert a[:, [0,2,1,2,1]] == Matrix([
- [0, 2, 1, 2, 1],
- [3, 5, 4, 5, 4],
- [6, 8, 7, 8, 7]])
- a = SparseMatrix.zeros(3)
- a[1, 2] = 2
- a[0, 1] = 3
- a[2, 0] = 4
- assert a.extract([1, 1], [2]) == Matrix([
- [2],
- [2]])
- assert a.extract([1, 0], [2, 2, 2]) == Matrix([
- [2, 2, 2],
- [0, 0, 0]])
- assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([
- [2, 0, 0, 0],
- [0, 0, 3, 0],
- [2, 0, 0, 0],
- [0, 4, 0, 4]])
- def test_multiplication():
- a = Matrix((
- (1, 2),
- (3, 1),
- (0, 6),
- ))
- b = Matrix((
- (1, 2),
- (3, 0),
- ))
- c = a*b
- assert c[0, 0] == 7
- assert c[0, 1] == 2
- assert c[1, 0] == 6
- assert c[1, 1] == 6
- assert c[2, 0] == 18
- assert c[2, 1] == 0
- try:
- eval('c = a @ b')
- except SyntaxError:
- pass
- else:
- assert c[0, 0] == 7
- assert c[0, 1] == 2
- assert c[1, 0] == 6
- assert c[1, 1] == 6
- assert c[2, 0] == 18
- assert c[2, 1] == 0
- h = matrix_multiply_elementwise(a, c)
- assert h == a.multiply_elementwise(c)
- assert h[0, 0] == 7
- assert h[0, 1] == 4
- assert h[1, 0] == 18
- assert h[1, 1] == 6
- assert h[2, 0] == 0
- assert h[2, 1] == 0
- raises(ShapeError, lambda: matrix_multiply_elementwise(a, b))
- c = b * Symbol("x")
- assert isinstance(c, Matrix)
- assert c[0, 0] == x
- assert c[0, 1] == 2*x
- assert c[1, 0] == 3*x
- assert c[1, 1] == 0
- c2 = x * b
- assert c == c2
- c = 5 * b
- assert isinstance(c, Matrix)
- assert c[0, 0] == 5
- assert c[0, 1] == 2*5
- assert c[1, 0] == 3*5
- assert c[1, 1] == 0
- try:
- eval('c = 5 @ b')
- except SyntaxError:
- pass
- else:
- assert isinstance(c, Matrix)
- assert c[0, 0] == 5
- assert c[0, 1] == 2*5
- assert c[1, 0] == 3*5
- assert c[1, 1] == 0
- M = Matrix([[oo, 0], [0, oo]])
- assert M ** 2 == M
- M = Matrix([[oo, oo], [0, 0]])
- assert M ** 2 == Matrix([[nan, nan], [nan, nan]])
- def test_power():
- raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2)
- R = Rational
- A = Matrix([[2, 3], [4, 5]])
- assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2]
- assert (A**5)[:] == [6140, 8097, 10796, 14237]
- A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]])
- assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433]
- assert A**0 == eye(3)
- assert A**1 == A
- assert (Matrix([[2]]) ** 100)[0, 0] == 2**100
- assert eye(2)**10000000 == eye(2)
- assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]])
- A = Matrix([[33, 24], [48, 57]])
- assert (A**S.Half)[:] == [5, 2, 4, 7]
- A = Matrix([[0, 4], [-1, 5]])
- assert (A**S.Half)**2 == A
- assert Matrix([[1, 0], [1, 1]])**S.Half == Matrix([[1, 0], [S.Half, 1]])
- assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1, 0], [0.5, 1]])
- from sympy.abc import n
- assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]])
- assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]])
- assert Matrix([
- [a**n, a**(n - 1)*n, (a**n*n**2 - a**n*n)/(2*a**2)],
- [ 0, a**n, a**(n - 1)*n],
- [ 0, 0, a**n]])
- assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([
- [a**n, a**(n-1)*n, 0],
- [0, a**n, 0],
- [0, 0, b**n]])
- A = Matrix([[1, 0], [1, 7]])
- assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3)
- A = Matrix([[2]])
- assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \
- A._eval_pow_by_recursion(10)
- # testing a matrix that cannot be jordan blocked issue 11766
- m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]])
- raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10)))
- # test issue 11964
- raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10)))
- A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3
- assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
- raises(ValueError, lambda: A**2.1)
- raises(ValueError, lambda: A**Rational(3, 2))
- A = Matrix([[8, 1], [3, 2]])
- assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]])
- A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1
- assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]])
- A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2
- assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]])
- n = Symbol('n', integer=True)
- assert isinstance(A**n, MatPow)
- n = Symbol('n', integer=True, negative=True)
- raises(ValueError, lambda: A**n)
- n = Symbol('n', integer=True, nonnegative=True)
- assert A**n == Matrix([
- [KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1],
- [ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)],
- [ 0, 0, 1]])
- assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]])
- raises(ValueError, lambda: A**Rational(3, 2))
- A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]])
- assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]])
- assert A**5.0 == A**5
- A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]])
- n = Symbol("n")
- An = A**n
- assert An.subs(n, 2).doit() == A**2
- raises(ValueError, lambda: An.subs(n, -2).doit())
- assert An * An == A**(2*n)
- # concretizing behavior for non-integer and complex powers
- A = Matrix([[0,0,0],[0,0,0],[0,0,0]])
- n = Symbol('n', integer=True, positive=True)
- assert A**n == A
- n = Symbol('n', integer=True, nonnegative=True)
- assert A**n == diag(0**n, 0**n, 0**n)
- assert (A**n).subs(n, 0) == eye(3)
- assert (A**n).subs(n, 1) == zeros(3)
- A = Matrix ([[2,0,0],[0,2,0],[0,0,2]])
- assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1)
- assert A**I == diag (2**I, 2**I, 2**I)
- A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]])
- raises(ValueError, lambda: A**2.1)
- raises(ValueError, lambda: A**I)
- A = Matrix([[S.Half, S.Half], [S.Half, S.Half]])
- assert A**S.Half == A
- A = Matrix([[1, 1],[3, 3]])
- assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]])
- def test_issue_17247_expression_blowup_1():
- M = Matrix([[1+x, 1-x], [1-x, 1+x]])
- with dotprodsimp(True):
- assert M.exp().expand() == Matrix([
- [ (exp(2*x) + exp(2))/2, (-exp(2*x) + exp(2))/2],
- [(-exp(2*x) + exp(2))/2, (exp(2*x) + exp(2))/2]])
- def test_issue_17247_expression_blowup_2():
- M = Matrix([[1+x, 1-x], [1-x, 1+x]])
- with dotprodsimp(True):
- P, J = M.jordan_form ()
- assert P*J*P.inv()
- def test_issue_17247_expression_blowup_3():
- M = Matrix([[1+x, 1-x], [1-x, 1+x]])
- with dotprodsimp(True):
- assert M**100 == Matrix([
- [633825300114114700748351602688*x**100 + 633825300114114700748351602688, 633825300114114700748351602688 - 633825300114114700748351602688*x**100],
- [633825300114114700748351602688 - 633825300114114700748351602688*x**100, 633825300114114700748351602688*x**100 + 633825300114114700748351602688]])
- def test_issue_17247_expression_blowup_4():
- # This matrix takes extremely long on current master even with intermediate simplification so an abbreviated version is used. It is left here for test in case of future optimizations.
- # M = Matrix(S('''[
- # [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256, 15/128 - 3*I/32, 19/256 + 551*I/1024],
- # [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096, 129/256 - 549*I/512, 42533/16384 + 29103*I/8192],
- # [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256],
- # [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096],
- # [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128],
- # [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024],
- # [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64],
- # [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512],
- # [ -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64],
- # [ 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128],
- # [ -4, 9 - 5*I, -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16],
- # [ -2*I, 119/8 + 29*I/4, 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]'''))
- # assert M**10 == Matrix([
- # [ 7*(-221393644768594642173548179825793834595 - 1861633166167425978847110897013541127952*I)/9671406556917033397649408, 15*(31670992489131684885307005100073928751695 + 10329090958303458811115024718207404523808*I)/77371252455336267181195264, 7*(-3710978679372178839237291049477017392703 + 1377706064483132637295566581525806894169*I)/19342813113834066795298816, (9727707023582419994616144751727760051598 - 59261571067013123836477348473611225724433*I)/9671406556917033397649408, (31896723509506857062605551443641668183707 + 54643444538699269118869436271152084599580*I)/38685626227668133590597632, (-2024044860947539028275487595741003997397402 + 130959428791783397562960461903698670485863*I)/309485009821345068724781056, 3*(26190251453797590396533756519358368860907 - 27221191754180839338002754608545400941638*I)/77371252455336267181195264, (1154643595139959842768960128434994698330461 + 3385496216250226964322872072260446072295634*I)/618970019642690137449562112, 3*(-31849347263064464698310044805285774295286 - 11877437776464148281991240541742691164309*I)/77371252455336267181195264, (4661330392283532534549306589669150228040221 - 4171259766019818631067810706563064103956871*I)/1237940039285380274899124224, (9598353794289061833850770474812760144506 + 358027153990999990968244906482319780943983*I)/309485009821345068724781056, (-9755135335127734571547571921702373498554177 - 4837981372692695195747379349593041939686540*I)/2475880078570760549798248448],
- # [(-379516731607474268954110071392894274962069 - 422272153179747548473724096872271700878296*I)/77371252455336267181195264, (41324748029613152354787280677832014263339501 - 12715121258662668420833935373453570749288074*I)/1237940039285380274899124224, (-339216903907423793947110742819264306542397 + 494174755147303922029979279454787373566517*I)/77371252455336267181195264, (-18121350839962855576667529908850640619878381 - 37413012454129786092962531597292531089199003*I)/1237940039285380274899124224, (2489661087330511608618880408199633556675926 + 1137821536550153872137379935240732287260863*I)/309485009821345068724781056, (-136644109701594123227587016790354220062972119 + 110130123468183660555391413889600443583585272*I)/4951760157141521099596496896, (1488043981274920070468141664150073426459593 - 9691968079933445130866371609614474474327650*I)/1237940039285380274899124224, 27*(4636797403026872518131756991410164760195942 + 3369103221138229204457272860484005850416533*I)/4951760157141521099596496896, (-8534279107365915284081669381642269800472363 + 2241118846262661434336333368511372725482742*I)/1237940039285380274899124224, (60923350128174260992536531692058086830950875 - 263673488093551053385865699805250505661590126*I)/9903520314283042199192993792, (18520943561240714459282253753348921824172569 + 24846649186468656345966986622110971925703604*I)/4951760157141521099596496896, (-232781130692604829085973604213529649638644431 + 35981505277760667933017117949103953338570617*I)/9903520314283042199192993792],
- # [ (8742968295129404279528270438201520488950 + 3061473358639249112126847237482570858327*I)/4835703278458516698824704, (-245657313712011778432792959787098074935273 + 253113767861878869678042729088355086740856*I)/38685626227668133590597632, (1947031161734702327107371192008011621193 - 19462330079296259148177542369999791122762*I)/9671406556917033397649408, (552856485625209001527688949522750288619217 + 392928441196156725372494335248099016686580*I)/77371252455336267181195264, (-44542866621905323121630214897126343414629 + 3265340021421335059323962377647649632959*I)/19342813113834066795298816, (136272594005759723105646069956434264218730 - 330975364731707309489523680957584684763587*I)/38685626227668133590597632, (27392593965554149283318732469825168894401 + 75157071243800133880129376047131061115278*I)/38685626227668133590597632, 7*(-357821652913266734749960136017214096276154 - 45509144466378076475315751988405961498243*I)/309485009821345068724781056, (104485001373574280824835174390219397141149 - 99041000529599568255829489765415726168162*I)/77371252455336267181195264, (1198066993119982409323525798509037696321291 + 4249784165667887866939369628840569844519936*I)/618970019642690137449562112, (-114985392587849953209115599084503853611014 - 52510376847189529234864487459476242883449*I)/77371252455336267181195264, (6094620517051332877965959223269600650951573 - 4683469779240530439185019982269137976201163*I)/1237940039285380274899124224],
- # [ (611292255597977285752123848828590587708323 - 216821743518546668382662964473055912169502*I)/77371252455336267181195264, (-1144023204575811464652692396337616594307487 + 12295317806312398617498029126807758490062855*I)/309485009821345068724781056, (-374093027769390002505693378578475235158281 - 573533923565898290299607461660384634333639*I)/77371252455336267181195264, (47405570632186659000138546955372796986832987 - 2837476058950808941605000274055970055096534*I)/1237940039285380274899124224, (-571573207393621076306216726219753090535121 + 533381457185823100878764749236639320783831*I)/77371252455336267181195264, (-7096548151856165056213543560958582513797519 - 24035731898756040059329175131592138642195366*I)/618970019642690137449562112, (2396762128833271142000266170154694033849225 + 1448501087375679588770230529017516492953051*I)/309485009821345068724781056, (-150609293845161968447166237242456473262037053 + 92581148080922977153207018003184520294188436*I)/4951760157141521099596496896, 5*(270278244730804315149356082977618054486347 - 1997830155222496880429743815321662710091562*I)/1237940039285380274899124224, (62978424789588828258068912690172109324360330 + 44803641177219298311493356929537007630129097*I)/2475880078570760549798248448, 19*(-451431106327656743945775812536216598712236 + 114924966793632084379437683991151177407937*I)/1237940039285380274899124224, (63417747628891221594106738815256002143915995 - 261508229397507037136324178612212080871150958*I)/9903520314283042199192993792],
- # [ (-2144231934021288786200752920446633703357 + 2305614436009705803670842248131563850246*I)/1208925819614629174706176, (-90720949337459896266067589013987007078153 - 221951119475096403601562347412753844534569*I)/19342813113834066795298816, (11590973613116630788176337262688659880376 + 6514520676308992726483494976339330626159*I)/4835703278458516698824704, 3*(-131776217149000326618649542018343107657237 + 79095042939612668486212006406818285287004*I)/38685626227668133590597632, (10100577916793945997239221374025741184951 - 28631383488085522003281589065994018550748*I)/9671406556917033397649408, 67*(10090295594251078955008130473573667572549 + 10449901522697161049513326446427839676762*I)/77371252455336267181195264, (-54270981296988368730689531355811033930513 - 3413683117592637309471893510944045467443*I)/19342813113834066795298816, (440372322928679910536575560069973699181278 - 736603803202303189048085196176918214409081*I)/77371252455336267181195264, (33220374714789391132887731139763250155295 + 92055083048787219934030779066298919603554*I)/38685626227668133590597632, 5*(-594638554579967244348856981610805281527116 - 82309245323128933521987392165716076704057*I)/309485009821345068724781056, (128056368815300084550013708313312073721955 - 114619107488668120303579745393765245911404*I)/77371252455336267181195264, 21*(59839959255173222962789517794121843393573 + 241507883613676387255359616163487405826334*I)/618970019642690137449562112],
- # [ (-13454485022325376674626653802541391955147 + 184471402121905621396582628515905949793486*I)/19342813113834066795298816, (-6158730123400322562149780662133074862437105 - 3416173052604643794120262081623703514107476*I)/154742504910672534362390528, (770558003844914708453618983120686116100419 - 127758381209767638635199674005029818518766*I)/77371252455336267181195264, (-4693005771813492267479835161596671660631703 + 12703585094750991389845384539501921531449948*I)/309485009821345068724781056, (-295028157441149027913545676461260860036601 - 841544569970643160358138082317324743450770*I)/77371252455336267181195264, (56716442796929448856312202561538574275502893 + 7216818824772560379753073185990186711454778*I)/1237940039285380274899124224, 15*(-87061038932753366532685677510172566368387 + 61306141156647596310941396434445461895538*I)/154742504910672534362390528, (-3455315109680781412178133042301025723909347 - 24969329563196972466388460746447646686670670*I)/618970019642690137449562112, (2453418854160886481106557323699250865361849 + 1497886802326243014471854112161398141242514*I)/309485009821345068724781056, (-151343224544252091980004429001205664193082173 + 90471883264187337053549090899816228846836628*I)/4951760157141521099596496896, (1652018205533026103358164026239417416432989 - 9959733619236515024261775397109724431400162*I)/1237940039285380274899124224, 3*(40676374242956907656984876692623172736522006 + 31023357083037817469535762230872667581366205*I)/4951760157141521099596496896],
- # [ (-1226990509403328460274658603410696548387 - 4131739423109992672186585941938392788458*I)/1208925819614629174706176, (162392818524418973411975140074368079662703 + 23706194236915374831230612374344230400704*I)/9671406556917033397649408, (-3935678233089814180000602553655565621193 + 2283744757287145199688061892165659502483*I)/1208925819614629174706176, (-2400210250844254483454290806930306285131 - 315571356806370996069052930302295432758205*I)/19342813113834066795298816, (13365917938215281056563183751673390817910 + 15911483133819801118348625831132324863881*I)/4835703278458516698824704, 3*(-215950551370668982657516660700301003897855 + 51684341999223632631602864028309400489378*I)/38685626227668133590597632, (20886089946811765149439844691320027184765 - 30806277083146786592790625980769214361844*I)/9671406556917033397649408, (562180634592713285745940856221105667874855 + 1031543963988260765153550559766662245114916*I)/77371252455336267181195264, (-65820625814810177122941758625652476012867 - 12429918324787060890804395323920477537595*I)/19342813113834066795298816, (319147848192012911298771180196635859221089 - 402403304933906769233365689834404519960394*I)/38685626227668133590597632, (23035615120921026080284733394359587955057 + 115351677687031786114651452775242461310624*I)/38685626227668133590597632, (-3426830634881892756966440108592579264936130 - 1022954961164128745603407283836365128598559*I)/309485009821345068724781056],
- # [ (-192574788060137531023716449082856117537757 - 69222967328876859586831013062387845780692*I)/19342813113834066795298816, (2736383768828013152914815341491629299773262 - 2773252698016291897599353862072533475408743*I)/77371252455336267181195264, (-23280005281223837717773057436155921656805 + 214784953368021840006305033048142888879224*I)/19342813113834066795298816, (-3035247484028969580570400133318947903462326 - 2195168903335435855621328554626336958674325*I)/77371252455336267181195264, (984552428291526892214541708637840971548653 - 64006622534521425620714598573494988589378*I)/77371252455336267181195264, (-3070650452470333005276715136041262898509903 + 7286424705750810474140953092161794621989080*I)/154742504910672534362390528, (-147848877109756404594659513386972921139270 - 416306113044186424749331418059456047650861*I)/38685626227668133590597632, (55272118474097814260289392337160619494260781 + 7494019668394781211907115583302403519488058*I)/1237940039285380274899124224, (-581537886583682322424771088996959213068864 + 542191617758465339135308203815256798407429*I)/77371252455336267181195264, (-6422548983676355789975736799494791970390991 - 23524183982209004826464749309156698827737702*I)/618970019642690137449562112, 7*(180747195387024536886923192475064903482083 + 84352527693562434817771649853047924991804*I)/154742504910672534362390528, (-135485179036717001055310712747643466592387031 + 102346575226653028836678855697782273460527608*I)/4951760157141521099596496896],
- # [ (3384238362616083147067025892852431152105 + 156724444932584900214919898954874618256*I)/604462909807314587353088, (-59558300950677430189587207338385764871866 + 114427143574375271097298201388331237478857*I)/4835703278458516698824704, (-1356835789870635633517710130971800616227 - 7023484098542340388800213478357340875410*I)/1208925819614629174706176, (234884918567993750975181728413524549575881 + 79757294640629983786895695752733890213506*I)/9671406556917033397649408, (-7632732774935120473359202657160313866419 + 2905452608512927560554702228553291839465*I)/1208925819614629174706176, (52291747908702842344842889809762246649489 - 520996778817151392090736149644507525892649*I)/19342813113834066795298816, (17472406829219127839967951180375981717322 + 23464704213841582137898905375041819568669*I)/4835703278458516698824704, (-911026971811893092350229536132730760943307 + 150799318130900944080399439626714846752360*I)/38685626227668133590597632, (26234457233977042811089020440646443590687 - 45650293039576452023692126463683727692890*I)/9671406556917033397649408, 3*(288348388717468992528382586652654351121357 + 454526517721403048270274049572136109264668*I)/77371252455336267181195264, (-91583492367747094223295011999405657956347 - 12704691128268298435362255538069612411331*I)/19342813113834066795298816, (411208730251327843849027957710164064354221 - 569898526380691606955496789378230959965898*I)/38685626227668133590597632],
- # [ (27127513117071487872628354831658811211795 - 37765296987901990355760582016892124833857*I)/4835703278458516698824704, (1741779916057680444272938534338833170625435 + 3083041729779495966997526404685535449810378*I)/77371252455336267181195264, 3*(-60642236251815783728374561836962709533401 - 24630301165439580049891518846174101510744*I)/19342813113834066795298816, 3*(445885207364591681637745678755008757483408 - 350948497734812895032502179455610024541643*I)/38685626227668133590597632, (-47373295621391195484367368282471381775684 + 219122969294089357477027867028071400054973*I)/19342813113834066795298816, (-2801565819673198722993348253876353741520438 - 2250142129822658548391697042460298703335701*I)/77371252455336267181195264, (801448252275607253266997552356128790317119 - 50890367688077858227059515894356594900558*I)/77371252455336267181195264, (-5082187758525931944557763799137987573501207 + 11610432359082071866576699236013484487676124*I)/309485009821345068724781056, (-328925127096560623794883760398247685166830 - 643447969697471610060622160899409680422019*I)/77371252455336267181195264, 15*(2954944669454003684028194956846659916299765 + 33434406416888505837444969347824812608566*I)/1237940039285380274899124224, (-415749104352001509942256567958449835766827 + 479330966144175743357171151440020955412219*I)/77371252455336267181195264, 3*(-4639987285852134369449873547637372282914255 - 11994411888966030153196659207284951579243273*I)/1237940039285380274899124224],
- # [ (-478846096206269117345024348666145495601 + 1249092488629201351470551186322814883283*I)/302231454903657293676544, (-17749319421930878799354766626365926894989 - 18264580106418628161818752318217357231971*I)/1208925819614629174706176, (2801110795431528876849623279389579072819 + 363258850073786330770713557775566973248*I)/604462909807314587353088, (-59053496693129013745775512127095650616252 + 78143588734197260279248498898321500167517*I)/4835703278458516698824704, (-283186724922498212468162690097101115349 - 6443437753863179883794497936345437398276*I)/1208925819614629174706176, (188799118826748909206887165661384998787543 + 84274736720556630026311383931055307398820*I)/9671406556917033397649408, (-5482217151670072904078758141270295025989 + 1818284338672191024475557065444481298568*I)/1208925819614629174706176, (56564463395350195513805521309731217952281 - 360208541416798112109946262159695452898431*I)/19342813113834066795298816, 11*(1259539805728870739006416869463689438068 + 1409136581547898074455004171305324917387*I)/4835703278458516698824704, 5*(-123701190701414554945251071190688818343325 + 30997157322590424677294553832111902279712*I)/38685626227668133590597632, (16130917381301373033736295883982414239781 - 32752041297570919727145380131926943374516*I)/9671406556917033397649408, (650301385108223834347093740500375498354925 + 899526407681131828596801223402866051809258*I)/77371252455336267181195264],
- # [ (9011388245256140876590294262420614839483 + 8167917972423946282513000869327525382672*I)/1208925819614629174706176, (-426393174084720190126376382194036323028924 + 180692224825757525982858693158209545430621*I)/9671406556917033397649408, (24588556702197802674765733448108154175535 - 45091766022876486566421953254051868331066*I)/4835703278458516698824704, (1872113939365285277373877183750416985089691 + 3030392393733212574744122057679633775773130*I)/77371252455336267181195264, (-222173405538046189185754954524429864167549 - 75193157893478637039381059488387511299116*I)/19342813113834066795298816, (2670821320766222522963689317316937579844558 - 2645837121493554383087981511645435472169191*I)/77371252455336267181195264, 5*(-2100110309556476773796963197283876204940 + 41957457246479840487980315496957337371937*I)/19342813113834066795298816, (-5733743755499084165382383818991531258980593 - 3328949988392698205198574824396695027195732*I)/154742504910672534362390528, (707827994365259025461378911159398206329247 - 265730616623227695108042528694302299777294*I)/77371252455336267181195264, (-1442501604682933002895864804409322823788319 + 11504137805563265043376405214378288793343879*I)/309485009821345068724781056, (-56130472299445561499538726459719629522285 - 61117552419727805035810982426639329818864*I)/9671406556917033397649408, (39053692321126079849054272431599539429908717 - 10209127700342570953247177602860848130710666*I)/1237940039285380274899124224]])
- M = Matrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512],
- [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64],
- [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128],
- [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16],
- [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M**10 == Matrix(S('''[
- [ 7369525394972778926719607798014571861/604462909807314587353088 - 229284202061790301477392339912557559*I/151115727451828646838272, -19704281515163975949388435612632058035/1208925819614629174706176 + 14319858347987648723768698170712102887*I/302231454903657293676544, -3623281909451783042932142262164941211/604462909807314587353088 - 6039240602494288615094338643452320495*I/604462909807314587353088, 109260497799140408739847239685705357695/2417851639229258349412352 - 7427566006564572463236368211555511431*I/2417851639229258349412352, -16095803767674394244695716092817006641/2417851639229258349412352 + 10336681897356760057393429626719177583*I/1208925819614629174706176, -42207883340488041844332828574359769743/2417851639229258349412352 - 182332262671671273188016400290188468499*I/4835703278458516698824704],
- [50566491050825573392726324995779608259/1208925819614629174706176 - 90047007594468146222002432884052362145*I/2417851639229258349412352, 74273703462900000967697427843983822011/1208925819614629174706176 + 265947522682943571171988741842776095421*I/1208925819614629174706176, -116900341394390200556829767923360888429/2417851639229258349412352 - 53153263356679268823910621474478756845*I/2417851639229258349412352, 195407378023867871243426523048612490249/1208925819614629174706176 - 1242417915995360200584837585002906728929*I/9671406556917033397649408, -863597594389821970177319682495878193/302231454903657293676544 + 476936100741548328800725360758734300481*I/9671406556917033397649408, -3154451590535653853562472176601754835575/19342813113834066795298816 - 232909875490506237386836489998407329215*I/2417851639229258349412352],
- [ -1715444997702484578716037230949868543/302231454903657293676544 + 5009695651321306866158517287924120777*I/302231454903657293676544, -30551582497996879620371947949342101301/604462909807314587353088 - 7632518367986526187139161303331519629*I/151115727451828646838272, 312680739924495153190604170938220575/18889465931478580854784 - 108664334509328818765959789219208459*I/75557863725914323419136, -14693696966703036206178521686918865509/604462909807314587353088 + 72345386220900843930147151999899692401*I/1208925819614629174706176, -8218872496728882299722894680635296519/1208925819614629174706176 - 16776782833358893712645864791807664983*I/1208925819614629174706176, 143237839169380078671242929143670635137/2417851639229258349412352 + 2883817094806115974748882735218469447*I/2417851639229258349412352],
- [ 3087979417831061365023111800749855987/151115727451828646838272 + 34441942370802869368851419102423997089*I/604462909807314587353088, -148309181940158040917731426845476175667/604462909807314587353088 - 263987151804109387844966835369350904919*I/9671406556917033397649408, 50259518594816377378747711930008883165/1208925819614629174706176 - 95713974916869240305450001443767979653*I/2417851639229258349412352, 153466447023875527996457943521467271119/2417851639229258349412352 + 517285524891117105834922278517084871349*I/2417851639229258349412352, -29184653615412989036678939366291205575/604462909807314587353088 - 27551322282526322041080173287022121083*I/1208925819614629174706176, 196404220110085511863671393922447671649/1208925819614629174706176 - 1204712019400186021982272049902206202145*I/9671406556917033397649408],
- [ -2632581805949645784625606590600098779/151115727451828646838272 - 589957435912868015140272627522612771*I/37778931862957161709568, 26727850893953715274702844733506310247/302231454903657293676544 - 10825791956782128799168209600694020481*I/302231454903657293676544, -1036348763702366164044671908440791295/151115727451828646838272 + 3188624571414467767868303105288107375*I/151115727451828646838272, -36814959939970644875593411585393242449/604462909807314587353088 - 18457555789119782404850043842902832647*I/302231454903657293676544, 12454491297984637815063964572803058647/604462909807314587353088 - 340489532842249733975074349495329171*I/302231454903657293676544, -19547211751145597258386735573258916681/604462909807314587353088 + 87299583775782199663414539883938008933*I/1208925819614629174706176],
- [ -40281994229560039213253423262678393183/604462909807314587353088 - 2939986850065527327299273003299736641*I/604462909807314587353088, 331940684638052085845743020267462794181/2417851639229258349412352 - 284574901963624403933361315517248458969*I/1208925819614629174706176, 6453843623051745485064693628073010961/302231454903657293676544 + 36062454107479732681350914931391590957*I/604462909807314587353088, -147665869053634695632880753646441962067/604462909807314587353088 - 305987938660447291246597544085345123927*I/9671406556917033397649408, 107821369195275772166593879711259469423/2417851639229258349412352 - 11645185518211204108659001435013326687*I/302231454903657293676544, 64121228424717666402009446088588091619/1208925819614629174706176 + 265557133337095047883844369272389762133*I/1208925819614629174706176]]'''))
- def test_issue_17247_expression_blowup_5():
- M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
- with dotprodsimp(True):
- assert M.charpoly('x') == PurePoly(x**6 + (-6 - 6*I)*x**5 + 36*I*x**4, x, domain='EX')
- def test_issue_17247_expression_blowup_6():
- M = Matrix(8, 8, [x+i for i in range (64)])
- with dotprodsimp(True):
- assert M.det('bareiss') == 0
- def test_issue_17247_expression_blowup_7():
- M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
- with dotprodsimp(True):
- assert M.det('berkowitz') == 0
- def test_issue_17247_expression_blowup_8():
- M = Matrix(8, 8, [x+i for i in range (64)])
- with dotprodsimp(True):
- assert M.det('lu') == 0
- def test_issue_17247_expression_blowup_9():
- M = Matrix(8, 8, [x+i for i in range (64)])
- with dotprodsimp(True):
- assert M.rref() == (Matrix([
- [1, 0, -1, -2, -3, -4, -5, -6],
- [0, 1, 2, 3, 4, 5, 6, 7],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1))
- def test_issue_17247_expression_blowup_10():
- M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
- with dotprodsimp(True):
- assert M.cofactor(0, 0) == 0
- def test_issue_17247_expression_blowup_11():
- M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
- with dotprodsimp(True):
- assert M.cofactor_matrix() == Matrix(6, 6, [0]*36)
- def test_issue_17247_expression_blowup_12():
- M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I)
- with dotprodsimp(True):
- assert M.eigenvals() == {6: 1, 6*I: 1, 0: 4}
- def test_issue_17247_expression_blowup_13():
- M = Matrix([
- [ 0, 1 - x, x + 1, 1 - x],
- [1 - x, x + 1, 0, x + 1],
- [ 0, 1 - x, x + 1, 1 - x],
- [ 0, 0, 1 - x, 0]])
- ev = M.eigenvects()
- assert ev[0] == (0, 2, [Matrix([0, -1, 0, 1])])
- assert ev[1][0] == x - sqrt(2)*(x - 1) + 1
- assert ev[1][1] == 1
- assert ev[1][2][0].expand(deep=False, numer=True) == Matrix([
- [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)],
- [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x - sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)],
- [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)],
- [1]
- ])
- assert ev[2][0] == x + sqrt(2)*(x - 1) + 1
- assert ev[2][1] == 1
- assert ev[2][2][0].expand(deep=False, numer=True) == Matrix([
- [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)],
- [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x + sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)],
- [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)],
- [1]
- ])
- def test_issue_17247_expression_blowup_14():
- M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4)
- with dotprodsimp(True):
- assert M.echelon_form() == Matrix([
- [x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x],
- [ 0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x],
- [ 0, 0, 0, 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0, 0, 0, 0]])
- def test_issue_17247_expression_blowup_15():
- M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4)
- with dotprodsimp(True):
- assert M.rowspace() == [Matrix([[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x]]), Matrix([[0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x]])]
- def test_issue_17247_expression_blowup_16():
- M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4)
- with dotprodsimp(True):
- assert M.columnspace() == [Matrix([[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x]]), Matrix([[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1]])]
- def test_issue_17247_expression_blowup_17():
- M = Matrix(8, 8, [x+i for i in range (64)])
- with dotprodsimp(True):
- assert M.nullspace() == [
- Matrix([[1],[-2],[1],[0],[0],[0],[0],[0]]),
- Matrix([[2],[-3],[0],[1],[0],[0],[0],[0]]),
- Matrix([[3],[-4],[0],[0],[1],[0],[0],[0]]),
- Matrix([[4],[-5],[0],[0],[0],[1],[0],[0]]),
- Matrix([[5],[-6],[0],[0],[0],[0],[1],[0]]),
- Matrix([[6],[-7],[0],[0],[0],[0],[0],[1]])]
- def test_issue_17247_expression_blowup_18():
- M = Matrix(6, 6, ([1+x, 1-x]*3 + [1-x, 1+x]*3)*3)
- with dotprodsimp(True):
- assert not M.is_nilpotent()
- def test_issue_17247_expression_blowup_19():
- M = Matrix(S('''[
- [ -3/4, 0, 1/4 + I/2, 0],
- [ 0, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 1/2 - I, 0, 0, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert not M.is_diagonalizable()
- def test_issue_17247_expression_blowup_20():
- M = Matrix([
- [x + 1, 1 - x, 0, 0],
- [1 - x, x + 1, 0, x + 1],
- [ 0, 1 - x, x + 1, 0],
- [ 0, 0, 0, x + 1]])
- with dotprodsimp(True):
- assert M.diagonalize() == (Matrix([
- [1, 1, 0, (x + 1)/(x - 1)],
- [1, -1, 0, 0],
- [1, 1, 1, 0],
- [0, 0, 0, 1]]),
- Matrix([
- [2, 0, 0, 0],
- [0, 2*x, 0, 0],
- [0, 0, x + 1, 0],
- [0, 0, 0, x + 1]]))
- def test_issue_17247_expression_blowup_21():
- M = Matrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 0, 0],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.inv(method='GE') == Matrix(S('''[
- [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
- [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
- [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
- [0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
- def test_issue_17247_expression_blowup_22():
- M = Matrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 0, 0],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.inv(method='LU') == Matrix(S('''[
- [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
- [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
- [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
- [0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
- def test_issue_17247_expression_blowup_23():
- M = Matrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 0, 0],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.inv(method='ADJ').expand() == Matrix(S('''[
- [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
- [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
- [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
- [0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
- def test_issue_17247_expression_blowup_24():
- M = SparseMatrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 0, 0],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.inv(method='CH') == Matrix(S('''[
- [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
- [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
- [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
- [0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
- def test_issue_17247_expression_blowup_25():
- M = SparseMatrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 0, 0],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.inv(method='LDL') == Matrix(S('''[
- [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785],
- [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785],
- [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905],
- [0, 0, 0, -11328/952745 + 87616*I/952745]]'''))
- def test_issue_17247_expression_blowup_26():
- M = Matrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024],
- [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64],
- [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512],
- [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64],
- [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128],
- [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16],
- [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.rank() == 4
- def test_issue_17247_expression_blowup_27():
- M = Matrix([
- [ 0, 1 - x, x + 1, 1 - x],
- [1 - x, x + 1, 0, x + 1],
- [ 0, 1 - x, x + 1, 1 - x],
- [ 0, 0, 1 - x, 0]])
- with dotprodsimp(True):
- P, J = M.jordan_form()
- assert P.expand() == Matrix(S('''[
- [ 0, 4*x/(x**2 - 2*x + 1), -(-17*x**4 + 12*sqrt(2)*x**4 - 4*sqrt(2)*x**3 + 6*x**3 - 6*x - 4*sqrt(2)*x + 12*sqrt(2) + 17)/(-7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 + 8*x**3 - 2*x**2 + 8*x + 6*sqrt(2)*x - 5*sqrt(2) - 7), -(12*sqrt(2)*x**4 + 17*x**4 - 6*x**3 - 4*sqrt(2)*x**3 - 4*sqrt(2)*x + 6*x - 17 + 12*sqrt(2))/(7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 - 8*x**3 + 2*x**2 - 8*x + 6*sqrt(2)*x - 5*sqrt(2) + 7)],
- [x - 1, x/(x - 1) + 1/(x - 1), (-7*x**3 + 5*sqrt(2)*x**3 - x**2 + sqrt(2)*x**2 - sqrt(2)*x - x - 5*sqrt(2) - 7)/(-3*x**3 + 2*sqrt(2)*x**3 - 2*sqrt(2)*x**2 + 3*x**2 + 2*sqrt(2)*x + 3*x - 3 - 2*sqrt(2)), (7*x**3 + 5*sqrt(2)*x**3 + x**2 + sqrt(2)*x**2 - sqrt(2)*x + x - 5*sqrt(2) + 7)/(2*sqrt(2)*x**3 + 3*x**3 - 3*x**2 - 2*sqrt(2)*x**2 - 3*x + 2*sqrt(2)*x - 2*sqrt(2) + 3)],
- [ 0, 1, -(-3*x**2 + 2*sqrt(2)*x**2 + 2*x - 3 - 2*sqrt(2))/(-x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x + 1 + sqrt(2)), -(2*sqrt(2)*x**2 + 3*x**2 - 2*x - 2*sqrt(2) + 3)/(x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x - 1 + sqrt(2))],
- [1 - x, 0, 1, 1]]''')).expand()
- assert J == Matrix(S('''[
- [0, 1, 0, 0],
- [0, 0, 0, 0],
- [0, 0, x - sqrt(2)*(x - 1) + 1, 0],
- [0, 0, 0, x + sqrt(2)*(x - 1) + 1]]'''))
- def test_issue_17247_expression_blowup_28():
- M = Matrix(S('''[
- [ -3/4, 45/32 - 37*I/16, 0, 0],
- [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128],
- [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0],
- [ 0, 0, 0, -177/128 - 1369*I/128]]'''))
- with dotprodsimp(True):
- assert M.singular_values() == S('''[
- sqrt(14609315/131072 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2),
- sqrt(14609315/131072 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2),
- sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2),
- sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2)]''')
- def test_issue_16823():
- # This still needs to be fixed if not using dotprodsimp.
- M = Matrix(S('''[
- [1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I,15/128-3/32*I,19/256+551/1024*I],
- [21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I,129/256-549/512*I,42533/16384+29103/8192*I],
- [-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I],
- [1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I],
- [-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I],
- [1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I],
- [-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I],
- [-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I],
- [0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I],
- [1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I],
- [0,-4*I,0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I],
- [0,1/4+1/2*I,1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I]]'''))
- with dotprodsimp(True):
- assert M.rank() == 8
- def test_issue_18531():
- # solve_linear_system still needs fixing but the rref works.
- M = Matrix([
- [1, 1, 1, 1, 1, 0, 1, 0, 0],
- [1 + sqrt(2), -1 + sqrt(2), 1 - sqrt(2), -sqrt(2) - 1, 1, 1, -1, 1, 1],
- [-5 + 2*sqrt(2), -5 - 2*sqrt(2), -5 - 2*sqrt(2), -5 + 2*sqrt(2), -7, 2, -7, -2, 0],
- [-3*sqrt(2) - 1, 1 - 3*sqrt(2), -1 + 3*sqrt(2), 1 + 3*sqrt(2), -7, -5, 7, -5, 3],
- [7 - 4*sqrt(2), 4*sqrt(2) + 7, 4*sqrt(2) + 7, 7 - 4*sqrt(2), 7, -12, 7, 12, 0],
- [-1 + 3*sqrt(2), 1 + 3*sqrt(2), -3*sqrt(2) - 1, 1 - 3*sqrt(2), 7, -5, -7, -5, 3],
- [-3 + 2*sqrt(2), -3 - 2*sqrt(2), -3 - 2*sqrt(2), -3 + 2*sqrt(2), -1, 2, -1, -2, 0],
- [1 - sqrt(2), -sqrt(2) - 1, 1 + sqrt(2), -1 + sqrt(2), -1, 1, 1, 1, 1]
- ])
- with dotprodsimp(True):
- assert M.rref() == (Matrix([
- [1, 0, 0, 0, 0, 0, 0, 0, S(1)/2],
- [0, 1, 0, 0, 0, 0, 0, 0, -S(1)/2],
- [0, 0, 1, 0, 0, 0, 0, 0, S(1)/2],
- [0, 0, 0, 1, 0, 0, 0, 0, -S(1)/2],
- [0, 0, 0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0, -S(1)/2],
- [0, 0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1, -S(1)/2]]), (0, 1, 2, 3, 4, 5, 6, 7))
- def test_creation():
- raises(ValueError, lambda: Matrix(5, 5, range(20)))
- raises(ValueError, lambda: Matrix(5, -1, []))
- raises(IndexError, lambda: Matrix((1, 2))[2])
- with raises(IndexError):
- Matrix((1, 2))[3] = 5
- assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, [])
- # anything used to be allowed in a matrix
- with warns_deprecated_sympy():
- assert Matrix([[[1], (2,)]]).tolist() == [[[1], (2,)]]
- with warns_deprecated_sympy():
- assert Matrix([[[1], (2,)]]).T.tolist() == [[[1]], [(2,)]]
- M = Matrix([[0]])
- with warns_deprecated_sympy():
- M[0, 0] = S.EmptySet
- a = Matrix([[x, 0], [0, 0]])
- m = a
- assert m.cols == m.rows
- assert m.cols == 2
- assert m[:] == [x, 0, 0, 0]
- b = Matrix(2, 2, [x, 0, 0, 0])
- m = b
- assert m.cols == m.rows
- assert m.cols == 2
- assert m[:] == [x, 0, 0, 0]
- assert a == b
- assert Matrix(b) == b
- c23 = Matrix(2, 3, range(1, 7))
- c13 = Matrix(1, 3, range(7, 10))
- c = Matrix([c23, c13])
- assert c.cols == 3
- assert c.rows == 3
- assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9]
- assert Matrix(eye(2)) == eye(2)
- assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2))
- assert ImmutableMatrix(c) == c.as_immutable()
- assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable()
- assert c is not Matrix(c)
- dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]]
- M = Matrix(dat)
- assert M == Matrix([
- [1, 1, 2, 2, 2],
- [1, 1, 2, 2, 2],
- [1, 1, 2, 2, 2],
- [3, 3, 3, 4, 4],
- [3, 3, 3, 4, 4]])
- assert M.tolist() != dat
- # keep block form if evaluate=False
- assert Matrix(dat, evaluate=False).tolist() == dat
- A = MatrixSymbol("A", 2, 2)
- dat = [ones(2), A]
- assert Matrix(dat) == Matrix([
- [ 1, 1],
- [ 1, 1],
- [A[0, 0], A[0, 1]],
- [A[1, 0], A[1, 1]]])
- with warns_deprecated_sympy():
- assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat]
- # 0-dim tolerance
- assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)])
- raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)]))
- raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)]))
- # mix of Matrix and iterable
- M = Matrix([[1, 2], [3, 4]])
- M2 = Matrix([M, (5, 6)])
- assert M2 == Matrix([[1, 2], [3, 4], [5, 6]])
- def test_irregular_block():
- assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
- ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([
- [1, 2, 2, 2, 3, 3],
- [1, 2, 2, 2, 3, 3],
- [4, 2, 2, 2, 5, 5],
- [6, 6, 7, 7, 5, 5]])
- def test_tolist():
- lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]]
- m = Matrix(lst)
- assert m.tolist() == lst
- def test_as_mutable():
- assert zeros(0, 3).as_mutable() == zeros(0, 3)
- assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3))
- assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0))
- def test_slicing():
- m0 = eye(4)
- assert m0[:3, :3] == eye(3)
- assert m0[2:4, 0:2] == zeros(2)
- m1 = Matrix(3, 3, lambda i, j: i + j)
- assert m1[0, :] == Matrix(1, 3, (0, 1, 2))
- assert m1[1:3, 1] == Matrix(2, 1, (2, 3))
- m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]])
- assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15])
- assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]])
- def test_submatrix_assignment():
- m = zeros(4)
- m[2:4, 2:4] = eye(2)
- assert m == Matrix(((0, 0, 0, 0),
- (0, 0, 0, 0),
- (0, 0, 1, 0),
- (0, 0, 0, 1)))
- m[:2, :2] = eye(2)
- assert m == eye(4)
- m[:, 0] = Matrix(4, 1, (1, 2, 3, 4))
- assert m == Matrix(((1, 0, 0, 0),
- (2, 1, 0, 0),
- (3, 0, 1, 0),
- (4, 0, 0, 1)))
- m[:, :] = zeros(4)
- assert m == zeros(4)
- m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)]
- assert m == Matrix(((1, 2, 3, 4),
- (5, 6, 7, 8),
- (9, 10, 11, 12),
- (13, 14, 15, 16)))
- m[:2, 0] = [0, 0]
- assert m == Matrix(((0, 2, 3, 4),
- (0, 6, 7, 8),
- (9, 10, 11, 12),
- (13, 14, 15, 16)))
- def test_extract():
- m = Matrix(4, 3, lambda i, j: i*3 + j)
- assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10])
- assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11])
- assert m.extract(range(4), range(3)) == m
- raises(IndexError, lambda: m.extract([4], [0]))
- raises(IndexError, lambda: m.extract([0], [3]))
- def test_reshape():
- m0 = eye(3)
- assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1))
- m1 = Matrix(3, 4, lambda i, j: i + j)
- assert m1.reshape(
- 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)))
- assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)))
- def test_applyfunc():
- m0 = eye(3)
- assert m0.applyfunc(lambda x: 2*x) == eye(3)*2
- assert m0.applyfunc(lambda x: 0) == zeros(3)
- def test_expand():
- m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
- # Test if expand() returns a matrix
- m1 = m0.expand()
- assert m1 == Matrix(
- [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])
- a = Symbol('a', real=True)
- assert Matrix([exp(I*a)]).expand(complex=True) == \
- Matrix([cos(a) + I*sin(a)])
- assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([
- [1, 1, Rational(3, 2)],
- [0, 1, -1],
- [0, 0, 1]]
- )
- def test_refine():
- m0 = Matrix([[Abs(x)**2, sqrt(x**2)],
- [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]])
- m1 = m0.refine(Q.real(x) & Q.real(y))
- assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]])
- m1 = m0.refine(Q.positive(x) & Q.positive(y))
- assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]])
- m1 = m0.refine(Q.negative(x) & Q.negative(y))
- assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]])
- def test_random():
- M = randMatrix(3, 3)
- M = randMatrix(3, 3, seed=3)
- assert M == randMatrix(3, 3, seed=3)
- M = randMatrix(3, 4, 0, 150)
- M = randMatrix(3, seed=4, symmetric=True)
- assert M == randMatrix(3, seed=4, symmetric=True)
- S = M.copy()
- S.simplify()
- assert S == M # doesn't fail when elements are Numbers, not int
- rng = random.Random(4)
- assert M == randMatrix(3, symmetric=True, prng=rng)
- # Ensure symmetry
- for size in (10, 11): # Test odd and even
- for percent in (100, 70, 30):
- M = randMatrix(size, symmetric=True, percent=percent, prng=rng)
- assert M == M.T
- M = randMatrix(10, min=1, percent=70)
- zero_count = 0
- for i in range(M.shape[0]):
- for j in range(M.shape[1]):
- if M[i, j] == 0:
- zero_count += 1
- assert zero_count == 30
- def test_inverse():
- A = eye(4)
- assert A.inv() == eye(4)
- assert A.inv(method="LU") == eye(4)
- assert A.inv(method="ADJ") == eye(4)
- assert A.inv(method="CH") == eye(4)
- assert A.inv(method="LDL") == eye(4)
- assert A.inv(method="QR") == eye(4)
- A = Matrix([[2, 3, 5],
- [3, 6, 2],
- [8, 3, 6]])
- Ainv = A.inv()
- assert A*Ainv == eye(3)
- assert A.inv(method="LU") == Ainv
- assert A.inv(method="ADJ") == Ainv
- assert A.inv(method="CH") == Ainv
- assert A.inv(method="LDL") == Ainv
- assert A.inv(method="QR") == Ainv
- AA = Matrix([[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0],
- [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0],
- [1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
- [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],
- [1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0],
- [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1],
- [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0],
- [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1],
- [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1],
- [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0],
- [1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1],
- [1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0],
- [0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0],
- [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1],
- [0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1],
- [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1],
- [0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1],
- [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0]])
- assert AA.inv(method="BLOCK") * AA == eye(AA.shape[0])
- # test that immutability is not a problem
- cls = ImmutableMatrix
- m = cls([[48, 49, 31],
- [ 9, 71, 94],
- [59, 28, 65]])
- assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split())
- cls = ImmutableSparseMatrix
- m = cls([[48, 49, 31],
- [ 9, 71, 94],
- [59, 28, 65]])
- assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split())
- def test_matrix_inverse_mod():
- A = Matrix(2, 1, [1, 0])
- raises(NonSquareMatrixError, lambda: A.inv_mod(2))
- A = Matrix(2, 2, [1, 0, 0, 0])
- raises(ValueError, lambda: A.inv_mod(2))
- A = Matrix(2, 2, [1, 2, 3, 4])
- Ai = Matrix(2, 2, [1, 1, 0, 1])
- assert A.inv_mod(3) == Ai
- A = Matrix(2, 2, [1, 0, 0, 1])
- assert A.inv_mod(2) == A
- A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
- raises(ValueError, lambda: A.inv_mod(5))
- A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1])
- Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4])
- assert A.inv_mod(9) == Ai
- A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5])
- Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1])
- assert A.inv_mod(6) == Ai
- A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5])
- Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1])
- assert A.inv_mod(7) == Ai
- def test_jacobian_hessian():
- L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y])
- syms = [x, y]
- assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]])
- L = Matrix(1, 2, [x, x**2*y**3])
- assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]])
- f = x**2*y
- syms = [x, y]
- assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]])
- f = x**2*y**3
- assert hessian(f, syms) == \
- Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]])
- f = z + x*y**2
- g = x**2 + 2*y**3
- ans = Matrix([[0, 2*y],
- [2*y, 2*x]])
- assert ans == hessian(f, Matrix([x, y]))
- assert ans == hessian(f, Matrix([x, y]).T)
- assert hessian(f, (y, x), [g]) == Matrix([
- [ 0, 6*y**2, 2*x],
- [6*y**2, 2*x, 2*y],
- [ 2*x, 2*y, 0]])
- def test_wronskian():
- assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2
- assert wronskian([exp(x), exp(2*x)], x) == exp(3*x)
- assert wronskian([exp(x), x], x) == exp(x) - x*exp(x)
- assert wronskian([1, x, x**2], x) == 2
- w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \
- exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3
- assert wronskian([exp(x), cos(x), x**3], x).expand() == w1
- assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \
- == w1
- w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2
- assert wronskian([sin(x), cos(x), x**3], x).expand() == w2
- assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \
- == w2
- assert wronskian([], x) == 1
- def test_subs():
- assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]])
- assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \
- Matrix([[-1, 2], [-3, 4]])
- assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \
- Matrix([[-1, 2], [-3, 4]])
- assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \
- Matrix([[-1, 2], [-3, 4]])
- assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \
- Matrix([(x - 1)*(y - 1)])
- for cls in classes:
- assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2)
- def test_xreplace():
- assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \
- Matrix([[1, 5], [5, 4]])
- assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \
- Matrix([[-1, 2], [-3, 4]])
- for cls in classes:
- assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2})
- def test_simplify():
- n = Symbol('n')
- f = Function('f')
- M = Matrix([[ 1/x + 1/y, (x + x*y) / x ],
- [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]])
- M.simplify()
- assert M == Matrix([[ (x + y)/(x * y), 1 + y ],
- [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]])
- eq = (1 + x)**2
- M = Matrix([[eq]])
- M.simplify()
- assert M == Matrix([[eq]])
- M.simplify(ratio=oo)
- assert M == Matrix([[eq.simplify(ratio=oo)]])
- def test_transpose():
- M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
- [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]])
- assert M.T == Matrix( [ [1, 1],
- [2, 2],
- [3, 3],
- [4, 4],
- [5, 5],
- [6, 6],
- [7, 7],
- [8, 8],
- [9, 9],
- [0, 0] ])
- assert M.T.T == M
- assert M.T == M.transpose()
- def test_conjugate():
- M = Matrix([[0, I, 5],
- [1, 2, 0]])
- assert M.T == Matrix([[0, 1],
- [I, 2],
- [5, 0]])
- assert M.C == Matrix([[0, -I, 5],
- [1, 2, 0]])
- assert M.C == M.conjugate()
- assert M.H == M.T.C
- assert M.H == Matrix([[ 0, 1],
- [-I, 2],
- [ 5, 0]])
- def test_conj_dirac():
- raises(AttributeError, lambda: eye(3).D)
- M = Matrix([[1, I, I, I],
- [0, 1, I, I],
- [0, 0, 1, I],
- [0, 0, 0, 1]])
- assert M.D == Matrix([[ 1, 0, 0, 0],
- [-I, 1, 0, 0],
- [-I, -I, -1, 0],
- [-I, -I, I, -1]])
- def test_trace():
- M = Matrix([[1, 0, 0],
- [0, 5, 0],
- [0, 0, 8]])
- assert M.trace() == 14
- def test_shape():
- M = Matrix([[x, 0, 0],
- [0, y, 0]])
- assert M.shape == (2, 3)
- def test_col_row_op():
- M = Matrix([[x, 0, 0],
- [0, y, 0]])
- M.row_op(1, lambda r, j: r + j + 1)
- assert M == Matrix([[x, 0, 0],
- [1, y + 2, 3]])
- M.col_op(0, lambda c, j: c + y**j)
- assert M == Matrix([[x + 1, 0, 0],
- [1 + y, y + 2, 3]])
- # neither row nor slice give copies that allow the original matrix to
- # be changed
- assert M.row(0) == Matrix([[x + 1, 0, 0]])
- r1 = M.row(0)
- r1[0] = 42
- assert M[0, 0] == x + 1
- r1 = M[0, :-1] # also testing negative slice
- r1[0] = 42
- assert M[0, 0] == x + 1
- c1 = M.col(0)
- assert c1 == Matrix([x + 1, 1 + y])
- c1[0] = 0
- assert M[0, 0] == x + 1
- c1 = M[:, 0]
- c1[0] = 42
- assert M[0, 0] == x + 1
- def test_zip_row_op():
- for cls in classes[:2]: # XXX: immutable matrices don't support row ops
- M = cls.eye(3)
- M.zip_row_op(1, 0, lambda v, u: v + 2*u)
- assert M == cls([[1, 0, 0],
- [2, 1, 0],
- [0, 0, 1]])
- M = cls.eye(3)*2
- M[0, 1] = -1
- M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
- assert M == cls([[2, -1, 0],
- [4, 0, 0],
- [0, 0, 2]])
- def test_issue_3950():
- m = Matrix([1, 2, 3])
- a = Matrix([1, 2, 3])
- b = Matrix([2, 2, 3])
- assert not (m in [])
- assert not (m in [1])
- assert m != 1
- assert m == a
- assert m != b
- def test_issue_3981():
- class Index1:
- def __index__(self):
- return 1
- class Index2:
- def __index__(self):
- return 2
- index1 = Index1()
- index2 = Index2()
- m = Matrix([1, 2, 3])
- assert m[index2] == 3
- m[index2] = 5
- assert m[2] == 5
- m = Matrix([[1, 2, 3], [4, 5, 6]])
- assert m[index1, index2] == 6
- assert m[1, index2] == 6
- assert m[index1, 2] == 6
- m[index1, index2] = 4
- assert m[1, 2] == 4
- m[1, index2] = 6
- assert m[1, 2] == 6
- m[index1, 2] = 8
- assert m[1, 2] == 8
- def test_evalf():
- a = Matrix([sqrt(5), 6])
- assert all(a.evalf()[i] == a[i].evalf() for i in range(2))
- assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2))
- assert all(a.n(2)[i] == a[i].n(2) for i in range(2))
- def test_is_symbolic():
- a = Matrix([[x, x], [x, x]])
- assert a.is_symbolic() is True
- a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
- assert a.is_symbolic() is False
- a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]])
- assert a.is_symbolic() is True
- a = Matrix([[1, x, 3]])
- assert a.is_symbolic() is True
- a = Matrix([[1, 2, 3]])
- assert a.is_symbolic() is False
- a = Matrix([[1], [x], [3]])
- assert a.is_symbolic() is True
- a = Matrix([[1], [2], [3]])
- assert a.is_symbolic() is False
- def test_is_upper():
- a = Matrix([[1, 2, 3]])
- assert a.is_upper is True
- a = Matrix([[1], [2], [3]])
- assert a.is_upper is False
- a = zeros(4, 2)
- assert a.is_upper is True
- def test_is_lower():
- a = Matrix([[1, 2, 3]])
- assert a.is_lower is False
- a = Matrix([[1], [2], [3]])
- assert a.is_lower is True
- def test_is_nilpotent():
- a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0])
- assert a.is_nilpotent()
- a = Matrix([[1, 0], [0, 1]])
- assert not a.is_nilpotent()
- a = Matrix([])
- assert a.is_nilpotent()
- def test_zeros_ones_fill():
- n, m = 3, 5
- a = zeros(n, m)
- a.fill( 5 )
- b = 5 * ones(n, m)
- assert a == b
- assert a.rows == b.rows == 3
- assert a.cols == b.cols == 5
- assert a.shape == b.shape == (3, 5)
- assert zeros(2) == zeros(2, 2)
- assert ones(2) == ones(2, 2)
- assert zeros(2, 3) == Matrix(2, 3, [0]*6)
- assert ones(2, 3) == Matrix(2, 3, [1]*6)
- a.fill(0)
- assert a == zeros(n, m)
- def test_empty_zeros():
- a = zeros(0)
- assert a == Matrix()
- a = zeros(0, 2)
- assert a.rows == 0
- assert a.cols == 2
- a = zeros(2, 0)
- assert a.rows == 2
- assert a.cols == 0
- def test_issue_3749():
- a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]])
- assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]])
- assert Matrix([
- [x, -x, x**2],
- [exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \
- Matrix([[oo, -oo, oo], [oo, 0, oo]])
- assert Matrix([
- [(exp(x) - 1)/x, 2*x + y*x, x**x ],
- [1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \
- Matrix([[1, 0, 1], [oo, 0, sin(1)]])
- assert a.integrate(x) == Matrix([
- [Rational(1, 3)*x**3, y*x**2/2],
- [x**2*sin(y)/2, x**2*cos(y)/2]])
- def test_inv_iszerofunc():
- A = eye(4)
- A.col_swap(0, 1)
- for method in "GE", "LU":
- assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \
- A.inv(method="ADJ")
- def test_jacobian_metrics():
- rho, phi = symbols("rho,phi")
- X = Matrix([rho*cos(phi), rho*sin(phi)])
- Y = Matrix([rho, phi])
- J = X.jacobian(Y)
- assert J == X.jacobian(Y.T)
- assert J == (X.T).jacobian(Y)
- assert J == (X.T).jacobian(Y.T)
- g = J.T*eye(J.shape[0])*J
- g = g.applyfunc(trigsimp)
- assert g == Matrix([[1, 0], [0, rho**2]])
- def test_jacobian2():
- rho, phi = symbols("rho,phi")
- X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
- Y = Matrix([rho, phi])
- J = Matrix([
- [cos(phi), -rho*sin(phi)],
- [sin(phi), rho*cos(phi)],
- [ 2*rho, 0],
- ])
- assert X.jacobian(Y) == J
- def test_issue_4564():
- X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)])
- Y = Matrix([x, y, z])
- for i in range(1, 3):
- for j in range(1, 3):
- X_slice = X[:i, :]
- Y_slice = Y[:j, :]
- J = X_slice.jacobian(Y_slice)
- assert J.rows == i
- assert J.cols == j
- for k in range(j):
- assert J[:, k] == X_slice
- def test_nonvectorJacobian():
- X = Matrix([[exp(x + y + z), exp(x + y + z)],
- [exp(x + y + z), exp(x + y + z)]])
- raises(TypeError, lambda: X.jacobian(Matrix([x, y, z])))
- X = X[0, :]
- Y = Matrix([[x, y], [x, z]])
- raises(TypeError, lambda: X.jacobian(Y))
- raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ])))
- def test_vec():
- m = Matrix([[1, 3], [2, 4]])
- m_vec = m.vec()
- assert m_vec.cols == 1
- for i in range(4):
- assert m_vec[i] == i + 1
- def test_vech():
- m = Matrix([[1, 2], [2, 3]])
- m_vech = m.vech()
- assert m_vech.cols == 1
- for i in range(3):
- assert m_vech[i] == i + 1
- m_vech = m.vech(diagonal=False)
- assert m_vech[0] == 2
- m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]])
- m_vech = m.vech(diagonal=False)
- assert m_vech[0] == y*x + x**2
- m = Matrix([[1, x*(x + y)], [y*x, 1]])
- m_vech = m.vech(diagonal=False, check_symmetry=False)
- assert m_vech[0] == y*x
- raises(ShapeError, lambda: Matrix([[1, 3]]).vech())
- raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech())
- raises(ShapeError, lambda: Matrix([[1, 3]]).vech())
- raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech())
- def test_diag():
- # mostly tested in testcommonmatrix.py
- assert diag([1, 2, 3]) == Matrix([1, 2, 3])
- m = [1, 2, [3]]
- raises(ValueError, lambda: diag(m))
- assert diag(m, strict=False) == Matrix([1, 2, 3])
- def test_get_diag_blocks1():
- a = Matrix([[1, 2], [2, 3]])
- b = Matrix([[3, x], [y, 3]])
- c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
- assert a.get_diag_blocks() == [a]
- assert b.get_diag_blocks() == [b]
- assert c.get_diag_blocks() == [c]
- def test_get_diag_blocks2():
- a = Matrix([[1, 2], [2, 3]])
- b = Matrix([[3, x], [y, 3]])
- c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
- assert diag(a, b, b).get_diag_blocks() == [a, b, b]
- assert diag(a, b, c).get_diag_blocks() == [a, b, c]
- assert diag(a, c, b).get_diag_blocks() == [a, c, b]
- assert diag(c, c, b).get_diag_blocks() == [c, c, b]
- def test_inv_block():
- a = Matrix([[1, 2], [2, 3]])
- b = Matrix([[3, x], [y, 3]])
- c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
- A = diag(a, b, b)
- assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv())
- A = diag(a, b, c)
- assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv())
- A = diag(a, c, b)
- assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv())
- A = diag(a, a, b, a, c, a)
- assert A.inv(try_block_diag=True) == diag(
- a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv())
- assert A.inv(try_block_diag=True, method="ADJ") == diag(
- a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"),
- a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ"))
- def test_creation_args():
- """
- Check that matrix dimensions can be specified using any reasonable type
- (see issue 4614).
- """
- raises(ValueError, lambda: zeros(3, -1))
- raises(TypeError, lambda: zeros(1, 2, 3, 4))
- assert zeros(int(3)) == zeros(3)
- assert zeros(Integer(3)) == zeros(3)
- raises(ValueError, lambda: zeros(3.))
- assert eye(int(3)) == eye(3)
- assert eye(Integer(3)) == eye(3)
- raises(ValueError, lambda: eye(3.))
- assert ones(int(3), Integer(4)) == ones(3, 4)
- raises(TypeError, lambda: Matrix(5))
- raises(TypeError, lambda: Matrix(1, 2))
- raises(ValueError, lambda: Matrix([1, [2]]))
- def test_diagonal_symmetrical():
- m = Matrix(2, 2, [0, 1, 1, 0])
- assert not m.is_diagonal()
- assert m.is_symmetric()
- assert m.is_symmetric(simplify=False)
- m = Matrix(2, 2, [1, 0, 0, 1])
- assert m.is_diagonal()
- m = diag(1, 2, 3)
- assert m.is_diagonal()
- assert m.is_symmetric()
- m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3])
- assert m == diag(1, 2, 3)
- m = Matrix(2, 3, zeros(2, 3))
- assert not m.is_symmetric()
- assert m.is_diagonal()
- m = Matrix(((5, 0), (0, 6), (0, 0)))
- assert m.is_diagonal()
- m = Matrix(((5, 0, 0), (0, 6, 0)))
- assert m.is_diagonal()
- m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
- assert m.is_symmetric()
- assert not m.is_symmetric(simplify=False)
- assert m.expand().is_symmetric(simplify=False)
- def test_diagonalization():
- m = Matrix([[1, 2+I], [2-I, 3]])
- assert m.is_diagonalizable()
- m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10])
- assert not m.is_diagonalizable()
- assert not m.is_symmetric()
- raises(NonSquareMatrixError, lambda: m.diagonalize())
- # diagonalizable
- m = diag(1, 2, 3)
- (P, D) = m.diagonalize()
- assert P == eye(3)
- assert D == m
- m = Matrix(2, 2, [0, 1, 1, 0])
- assert m.is_symmetric()
- assert m.is_diagonalizable()
- (P, D) = m.diagonalize()
- assert P.inv() * m * P == D
- m = Matrix(2, 2, [1, 0, 0, 3])
- assert m.is_symmetric()
- assert m.is_diagonalizable()
- (P, D) = m.diagonalize()
- assert P.inv() * m * P == D
- assert P == eye(2)
- assert D == m
- m = Matrix(2, 2, [1, 1, 0, 0])
- assert m.is_diagonalizable()
- (P, D) = m.diagonalize()
- assert P.inv() * m * P == D
- m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
- assert m.is_diagonalizable()
- (P, D) = m.diagonalize()
- assert P.inv() * m * P == D
- for i in P:
- assert i.as_numer_denom()[1] == 1
- m = Matrix(2, 2, [1, 0, 0, 0])
- assert m.is_diagonal()
- assert m.is_diagonalizable()
- (P, D) = m.diagonalize()
- assert P.inv() * m * P == D
- assert P == Matrix([[0, 1], [1, 0]])
- # diagonalizable, complex only
- m = Matrix(2, 2, [0, 1, -1, 0])
- assert not m.is_diagonalizable(True)
- raises(MatrixError, lambda: m.diagonalize(True))
- assert m.is_diagonalizable()
- (P, D) = m.diagonalize()
- assert P.inv() * m * P == D
- # not diagonalizable
- m = Matrix(2, 2, [0, 1, 0, 0])
- assert not m.is_diagonalizable()
- raises(MatrixError, lambda: m.diagonalize())
- m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4])
- assert not m.is_diagonalizable()
- raises(MatrixError, lambda: m.diagonalize())
- # symbolic
- a, b, c, d = symbols('a b c d')
- m = Matrix(2, 2, [a, c, c, b])
- assert m.is_symmetric()
- assert m.is_diagonalizable()
- def test_issue_15887():
- # Mutable matrix should not use cache
- a = MutableDenseMatrix([[0, 1], [1, 0]])
- assert a.is_diagonalizable() is True
- a[1, 0] = 0
- assert a.is_diagonalizable() is False
- a = MutableDenseMatrix([[0, 1], [1, 0]])
- a.diagonalize()
- a[1, 0] = 0
- raises(MatrixError, lambda: a.diagonalize())
- def test_jordan_form():
- m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10])
- raises(NonSquareMatrixError, lambda: m.jordan_form())
- # diagonalizable
- m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13])
- Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1])
- P, J = m.jordan_form()
- assert Jmust == J
- assert Jmust == m.diagonalize()[1]
- # m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1])
- # m.jordan_form() # very long
- # m.jordan_form() #
- # diagonalizable, complex only
- # Jordan cells
- # complexity: one of eigenvalues is zero
- m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2])
- # The blocks are ordered according to the value of their eigenvalues,
- # in order to make the matrix compatible with .diagonalize()
- Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2])
- P, J = m.jordan_form()
- assert Jmust == J
- # complexity: all of eigenvalues are equal
- m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6])
- # Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1])
- # same here see 1456ff
- Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1])
- P, J = m.jordan_form()
- assert Jmust == J
- # complexity: two of eigenvalues are zero
- m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4])
- Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1])
- P, J = m.jordan_form()
- assert Jmust == J
- m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5])
- Jmust = Matrix(4, 4, [2, 1, 0, 0,
- 0, 2, 0, 0,
- 0, 0, 2, 1,
- 0, 0, 0, 2]
- )
- P, J = m.jordan_form()
- assert Jmust == J
- m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4])
- # Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2])
- # same here see 1456ff
- Jmust = Matrix(4, 4, [-2, 0, 0, 0,
- 0, 2, 1, 0,
- 0, 0, 2, 0,
- 0, 0, 0, 2])
- P, J = m.jordan_form()
- assert Jmust == J
- m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2])
- assert not m.is_diagonalizable()
- Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4])
- P, J = m.jordan_form()
- assert Jmust == J
- # checking for maximum precision to remain unchanged
- m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)],
- [Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]])
- P, J = m.jordan_form()
- for term in J.values():
- if isinstance(term, Float):
- assert term._prec == 110
- def test_jordan_form_complex_issue_9274():
- A = Matrix([[ 2, 4, 1, 0],
- [-4, 2, 0, 1],
- [ 0, 0, 2, 4],
- [ 0, 0, -4, 2]])
- p = 2 - 4*I;
- q = 2 + 4*I;
- Jmust1 = Matrix([[p, 1, 0, 0],
- [0, p, 0, 0],
- [0, 0, q, 1],
- [0, 0, 0, q]])
- Jmust2 = Matrix([[q, 1, 0, 0],
- [0, q, 0, 0],
- [0, 0, p, 1],
- [0, 0, 0, p]])
- P, J = A.jordan_form()
- assert J == Jmust1 or J == Jmust2
- assert simplify(P*J*P.inv()) == A
- def test_issue_10220():
- # two non-orthogonal Jordan blocks with eigenvalue 1
- M = Matrix([[1, 0, 0, 1],
- [0, 1, 1, 0],
- [0, 0, 1, 1],
- [0, 0, 0, 1]])
- P, J = M.jordan_form()
- assert P == Matrix([[0, 1, 0, 1],
- [1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0]])
- assert J == Matrix([
- [1, 1, 0, 0],
- [0, 1, 1, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1]])
- def test_jordan_form_issue_15858():
- A = Matrix([
- [1, 1, 1, 0],
- [-2, -1, 0, -1],
- [0, 0, -1, -1],
- [0, 0, 2, 1]])
- (P, J) = A.jordan_form()
- assert P.expand() == Matrix([
- [ -I, -I/2, I, I/2],
- [-1 + I, 0, -1 - I, 0],
- [ 0, -S(1)/2 - I/2, 0, -S(1)/2 + I/2],
- [ 0, 1, 0, 1]])
- assert J == Matrix([
- [-I, 1, 0, 0],
- [0, -I, 0, 0],
- [0, 0, I, 1],
- [0, 0, 0, I]])
- def test_Matrix_berkowitz_charpoly():
- UA, K_i, K_w = symbols('UA K_i K_w')
- A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)],
- [ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]])
- charpoly = A.charpoly(x)
- assert charpoly == \
- Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x +
- K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)')
- assert type(charpoly) is PurePoly
- A = Matrix([[1, 3], [2, 0]])
- assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6)
- A = Matrix([[1, 2], [x, 0]])
- p = A.charpoly(x)
- assert p.gen != x
- assert p.as_expr().subs(p.gen, x) == x**2 - 3*x
- def test_exp_jordan_block():
- l = Symbol('lamda')
- m = Matrix.jordan_block(1, l)
- assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]])
- m = Matrix.jordan_block(3, l)
- assert m._eval_matrix_exp_jblock() == \
- Matrix([
- [exp(l), exp(l), exp(l)/2],
- [0, exp(l), exp(l)],
- [0, 0, exp(l)]])
- def test_exp():
- m = Matrix([[3, 4], [0, -2]])
- m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]])
- assert m.exp() == m_exp
- assert exp(m) == m_exp
- m = Matrix([[1, 0], [0, 1]])
- assert m.exp() == Matrix([[E, 0], [0, E]])
- assert exp(m) == Matrix([[E, 0], [0, E]])
- m = Matrix([[1, -1], [1, 1]])
- assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]])
- def test_log():
- l = Symbol('lamda')
- m = Matrix.jordan_block(1, l)
- assert m._eval_matrix_log_jblock() == Matrix([[log(l)]])
- m = Matrix.jordan_block(4, l)
- assert m._eval_matrix_log_jblock() == \
- Matrix(
- [
- [log(l), 1/l, -1/(2*l**2), 1/(3*l**3)],
- [0, log(l), 1/l, -1/(2*l**2)],
- [0, 0, log(l), 1/l],
- [0, 0, 0, log(l)]
- ]
- )
- m = Matrix(
- [[0, 0, 1],
- [0, 0, 0],
- [-1, 0, 0]]
- )
- raises(MatrixError, lambda: m.log())
- def test_has():
- A = Matrix(((x, y), (2, 3)))
- assert A.has(x)
- assert not A.has(z)
- assert A.has(Symbol)
- A = A.subs(x, 2)
- assert not A.has(x)
- def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1():
- # Test if matrices._find_reasonable_pivot_naive()
- # finds a guaranteed non-zero pivot when the
- # some of the candidate pivots are symbolic expressions.
- # Keyword argument: simpfunc=None indicates that no simplifications
- # should be performed during the search.
- x = Symbol('x')
- column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, S.Half])
- pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\
- _find_reasonable_pivot_naive(column)
- assert pivot_val == S.Half
- def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2():
- # Test if matrices._find_reasonable_pivot_naive()
- # finds a guaranteed non-zero pivot when the
- # some of the candidate pivots are symbolic expressions.
- # Keyword argument: simpfunc=_simplify indicates that the search
- # should attempt to simplify candidate pivots.
- x = Symbol('x')
- column = Matrix(3, 1,
- [x,
- cos(x)**2+sin(x)**2+x**2,
- cos(x)**2+sin(x)**2])
- pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\
- _find_reasonable_pivot_naive(column, simpfunc=_simplify)
- assert pivot_val == 1
- def test_find_reasonable_pivot_naive_simplifies():
- # Test if matrices._find_reasonable_pivot_naive()
- # simplifies candidate pivots, and reports
- # their offsets correctly.
- x = Symbol('x')
- column = Matrix(3, 1,
- [x,
- cos(x)**2+sin(x)**2+x,
- cos(x)**2+sin(x)**2])
- pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\
- _find_reasonable_pivot_naive(column, simpfunc=_simplify)
- assert len(simplified) == 2
- assert simplified[0][0] == 1
- assert simplified[0][1] == 1+x
- assert simplified[1][0] == 2
- assert simplified[1][1] == 1
- def test_errors():
- raises(ValueError, lambda: Matrix([[1, 2], [1]]))
- raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5])
- raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2])
- raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True))
- raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6))
- raises(ShapeError,
- lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2])))
- raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0,
- 1], set()))
- raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv())
- raises(ShapeError,
- lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]])))
- raises(
- ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]])))
- raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1,
- 2], [3, 4]])))
- raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1,
- 2], [3, 4]])))
- raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace())
- raises(TypeError, lambda: Matrix([1]).applyfunc(1))
- raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5))
- raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5))
- raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1))
- raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1))
- raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2])))
- raises(ShapeError, lambda: Matrix([1, 2]).dot([]))
- raises(TypeError, lambda: Matrix([1, 2]).dot('a'))
- raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3]))
- raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp())
- raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized())
- raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method'))
- raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE())
- raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE())
- raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ())
- raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ())
- raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU())
- raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent())
- raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det())
- raises(ValueError,
- lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method'))
- raises(ValueError,
- lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8],
- [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function"))
- raises(ValueError,
- lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8],
- [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False))
- raises(ValueError,
- lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]])))
- raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), []))
- raises(ValueError, lambda: hessian(Symbol('x')**2, 'a'))
- raises(IndexError, lambda: eye(3)[5, 2])
- raises(IndexError, lambda: eye(3)[2, 5])
- M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)))
- raises(ValueError, lambda: M.det('method=LU_decomposition()'))
- V = Matrix([[10, 10, 10]])
- M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- raises(ValueError, lambda: M.row_insert(4.7, V))
- M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- raises(ValueError, lambda: M.col_insert(-4.2, V))
- def test_len():
- assert len(Matrix()) == 0
- assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2
- assert len(Matrix(0, 2, lambda i, j: 0)) == \
- len(Matrix(2, 0, lambda i, j: 0)) == 0
- assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6
- assert Matrix([1]) == Matrix([[1]])
- assert not Matrix()
- assert Matrix() == Matrix([])
- def test_integrate():
- A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2)))
- assert A.integrate(x) == \
- Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3)))
- assert A.integrate(y) == \
- Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2)))
- def test_limit():
- A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1)))
- assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1)))
- def test_diff():
- A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1)))
- assert isinstance(A.diff(x), type(A))
- assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
- assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
- assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
- assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
- A_imm = A.as_immutable()
- assert isinstance(A_imm.diff(x), type(A_imm))
- assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
- assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
- assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
- assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0)))
- def test_diff_by_matrix():
- # Derive matrix by matrix:
- A = MutableDenseMatrix([[x, y], [z, t]])
- assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
- assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
- A_imm = A.as_immutable()
- assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
- assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
- # Derive a constant matrix:
- assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]])
- B = ImmutableDenseMatrix([a, b])
- assert A.diff(B) == Array.zeros(2, 1, 2, 2)
- assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
- # Test diff with tuples:
- dB = B.diff([[a, b]])
- assert dB.shape == (2, 2, 1)
- assert dB == Array([[[1], [0]], [[0], [1]]])
- f = Function("f")
- fxyz = f(x, y, z)
- assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)])
- assert fxyz.diff(([x, y, z], 2)) == Array([
- [fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)],
- [fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)],
- [fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)],
- ])
- expr = sin(x)*exp(y)
- assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)])
- assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)])
- assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)])
- assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]])
- # Test different notations:
- assert fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0]
- assert fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0]
- assert fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)])
- # Test scalar derived by matrix remains matrix:
- res = x.diff(Matrix([[x, y]]))
- assert isinstance(res, ImmutableDenseMatrix)
- assert res == Matrix([[1, 0]])
- res = (x**3).diff(Matrix([[x, y]]))
- assert isinstance(res, ImmutableDenseMatrix)
- assert res == Matrix([[3*x**2, 0]])
- def test_getattr():
- A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1)))
- raises(AttributeError, lambda: A.nonexistantattribute)
- assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x)))
- def test_hessenberg():
- A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]])
- assert A.is_upper_hessenberg
- A = A.T
- assert A.is_lower_hessenberg
- A[0, -1] = 1
- assert A.is_lower_hessenberg is False
- A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]])
- assert not A.is_upper_hessenberg
- A = zeros(5, 2)
- assert A.is_upper_hessenberg
- def test_cholesky():
- raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky())
- raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky())
- raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky())
- raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky())
- raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False))
- assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([
- [sqrt(5 + I), 0], [0, 1]])
- A = Matrix(((1, 5), (5, 1)))
- L = A.cholesky(hermitian=False)
- assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]])
- assert L*L.T == A
- A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
- L = A.cholesky()
- assert L * L.T == A
- assert L.is_lower
- assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]])
- A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11)))
- assert A.cholesky().expand() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3)))
- raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).cholesky())
- raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky())
- raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).cholesky())
- raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).cholesky())
- raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky(hermitian=False))
- assert SparseMatrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([
- [sqrt(5 + I), 0], [0, 1]])
- A = SparseMatrix(((1, 5), (5, 1)))
- L = A.cholesky(hermitian=False)
- assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]])
- assert L*L.T == A
- A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
- L = A.cholesky()
- assert L * L.T == A
- assert L.is_lower
- assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]])
- A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11)))
- assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3)))
- def test_matrix_norm():
- # Vector Tests
- # Test columns and symbols
- x = Symbol('x', real=True)
- v = Matrix([cos(x), sin(x)])
- assert trigsimp(v.norm(2)) == 1
- assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, Rational(1, 10))
- # Test Rows
- A = Matrix([[5, Rational(3, 2)]])
- assert A.norm() == Pow(25 + Rational(9, 4), S.Half)
- assert A.norm(oo) == max(A)
- assert A.norm(-oo) == min(A)
- # Matrix Tests
- # Intuitive test
- A = Matrix([[1, 1], [1, 1]])
- assert A.norm(2) == 2
- assert A.norm(-2) == 0
- assert A.norm('frobenius') == 2
- assert eye(10).norm(2) == eye(10).norm(-2) == 1
- assert A.norm(oo) == 2
- # Test with Symbols and more complex entries
- A = Matrix([[3, y, y], [x, S.Half, -pi]])
- assert (A.norm('fro')
- == sqrt(Rational(37, 4) + 2*abs(y)**2 + pi**2 + x**2))
- # Check non-square
- A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]])
- assert A.norm(2) == sqrt(Rational(389, 8) + sqrt(78665)/8)
- assert A.norm(-2) is S.Zero
- assert A.norm('frobenius') == sqrt(389)/2
- # Test properties of matrix norms
- # https://en.wikipedia.org/wiki/Matrix_norm#Definition
- # Two matrices
- A = Matrix([[1, 2], [3, 4]])
- B = Matrix([[5, 5], [-2, 2]])
- C = Matrix([[0, -I], [I, 0]])
- D = Matrix([[1, 0], [0, -1]])
- L = [A, B, C, D]
- alpha = Symbol('alpha', real=True)
- for order in ['fro', 2, -2]:
- # Zero Check
- assert zeros(3).norm(order) is S.Zero
- # Check Triangle Inequality for all Pairs of Matrices
- for X in L:
- for Y in L:
- dif = (X.norm(order) + Y.norm(order) -
- (X + Y).norm(order))
- assert (dif >= 0)
- # Scalar multiplication linearity
- for M in [A, B, C, D]:
- dif = simplify((alpha*M).norm(order) -
- abs(alpha) * M.norm(order))
- assert dif == 0
- # Test Properties of Vector Norms
- # https://en.wikipedia.org/wiki/Vector_norm
- # Two column vectors
- a = Matrix([1, 1 - 1*I, -3])
- b = Matrix([S.Half, 1*I, 1])
- c = Matrix([-1, -1, -1])
- d = Matrix([3, 2, I])
- e = Matrix([Integer(1e2), Rational(1, 1e2), 1])
- L = [a, b, c, d, e]
- alpha = Symbol('alpha', real=True)
- for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]:
- # Zero Check
- if order > 0:
- assert Matrix([0, 0, 0]).norm(order) is S.Zero
- # Triangle inequality on all pairs
- if order >= 1: # Triangle InEq holds only for these norms
- for X in L:
- for Y in L:
- dif = (X.norm(order) + Y.norm(order) -
- (X + Y).norm(order))
- assert simplify(dif >= 0) is S.true
- # Linear to scalar multiplication
- if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]:
- for X in L:
- dif = simplify((alpha*X).norm(order) -
- (abs(alpha) * X.norm(order)))
- assert dif == 0
- # ord=1
- M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6])
- assert M.norm(1) == 13
- def test_condition_number():
- x = Symbol('x', real=True)
- A = eye(3)
- A[0, 0] = 10
- A[2, 2] = Rational(1, 10)
- assert A.condition_number() == 100
- A[1, 1] = x
- assert A.condition_number() == Max(10, Abs(x)) / Min(Rational(1, 10), Abs(x))
- M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]])
- Mc = M.condition_number()
- assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in
- [Rational(1, 5), S.Half, Rational(1, 10), pi/2, pi, pi*Rational(7, 4) ])
- #issue 10782
- assert Matrix([]).condition_number() == 0
- def test_equality():
- A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
- B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1)))
- assert A == A[:, :]
- assert not A != A[:, :]
- assert not A == B
- assert A != B
- assert A != 10
- assert not A == 10
- # A SparseMatrix can be equal to a Matrix
- C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
- D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
- assert C == D
- assert not C != D
- def test_col_join():
- assert eye(3).col_join(Matrix([[7, 7, 7]])) == \
- Matrix([[1, 0, 0],
- [0, 1, 0],
- [0, 0, 1],
- [7, 7, 7]])
- def test_row_insert():
- r4 = Matrix([[4, 4, 4]])
- for i in range(-4, 5):
- l = [1, 0, 0]
- l.insert(i, 4)
- assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l
- def test_col_insert():
- c4 = Matrix([4, 4, 4])
- for i in range(-4, 5):
- l = [0, 0, 0]
- l.insert(i, 4)
- assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l
- def test_normalized():
- assert Matrix([3, 4]).normalized() == \
- Matrix([Rational(3, 5), Rational(4, 5)])
- # Zero vector trivial cases
- assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0])
- # Machine precision error truncation trivial cases
- m = Matrix([0,0,1.e-100])
- assert m.normalized(
- iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero
- ) == Matrix([0, 0, 0])
- def test_print_nonzero():
- assert capture(lambda: eye(3).print_nonzero()) == \
- '[X ]\n[ X ]\n[ X]\n'
- assert capture(lambda: eye(3).print_nonzero('.')) == \
- '[. ]\n[ . ]\n[ .]\n'
- def test_zeros_eye():
- assert Matrix.eye(3) == eye(3)
- assert Matrix.zeros(3) == zeros(3)
- assert ones(3, 4) == Matrix(3, 4, [1]*12)
- i = Matrix([[1, 0], [0, 1]])
- z = Matrix([[0, 0], [0, 0]])
- for cls in classes:
- m = cls.eye(2)
- assert i == m # but m == i will fail if m is immutable
- assert i == eye(2, cls=cls)
- assert type(m) == cls
- m = cls.zeros(2)
- assert z == m
- assert z == zeros(2, cls=cls)
- assert type(m) == cls
- def test_is_zero():
- assert Matrix().is_zero_matrix
- assert Matrix([[0, 0], [0, 0]]).is_zero_matrix
- assert zeros(3, 4).is_zero_matrix
- assert not eye(3).is_zero_matrix
- assert Matrix([[x, 0], [0, 0]]).is_zero_matrix == None
- assert SparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
- assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
- assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
- assert Matrix([[x, 1], [0, 0]]).is_zero_matrix == False
- a = Symbol('a', nonzero=True)
- assert Matrix([[a, 0], [0, 0]]).is_zero_matrix == False
- def test_rotation_matrices():
- # This tests the rotation matrices by rotating about an axis and back.
- theta = pi/3
- r3_plus = rot_axis3(theta)
- r3_minus = rot_axis3(-theta)
- r2_plus = rot_axis2(theta)
- r2_minus = rot_axis2(-theta)
- r1_plus = rot_axis1(theta)
- r1_minus = rot_axis1(-theta)
- assert r3_minus*r3_plus*eye(3) == eye(3)
- assert r2_minus*r2_plus*eye(3) == eye(3)
- assert r1_minus*r1_plus*eye(3) == eye(3)
- # Check the correctness of the trace of the rotation matrix
- assert r1_plus.trace() == 1 + 2*cos(theta)
- assert r2_plus.trace() == 1 + 2*cos(theta)
- assert r3_plus.trace() == 1 + 2*cos(theta)
- # Check that a rotation with zero angle doesn't change anything.
- assert rot_axis1(0) == eye(3)
- assert rot_axis2(0) == eye(3)
- assert rot_axis3(0) == eye(3)
- # Check left-hand convention
- # see Issue #24529
- q1 = Quaternion.from_axis_angle([1, 0, 0], pi / 2)
- q2 = Quaternion.from_axis_angle([0, 1, 0], pi / 2)
- q3 = Quaternion.from_axis_angle([0, 0, 1], pi / 2)
- assert rot_axis1(- pi / 2) == q1.to_rotation_matrix()
- assert rot_axis2(- pi / 2) == q2.to_rotation_matrix()
- assert rot_axis3(- pi / 2) == q3.to_rotation_matrix()
- # Check right-hand convention
- assert rot_ccw_axis1(+ pi / 2) == q1.to_rotation_matrix()
- assert rot_ccw_axis2(+ pi / 2) == q2.to_rotation_matrix()
- assert rot_ccw_axis3(+ pi / 2) == q3.to_rotation_matrix()
- def test_DeferredVector():
- assert str(DeferredVector("vector")[4]) == "vector[4]"
- assert sympify(DeferredVector("d")) == DeferredVector("d")
- raises(IndexError, lambda: DeferredVector("d")[-1])
- assert str(DeferredVector("d")) == "d"
- assert repr(DeferredVector("test")) == "DeferredVector('test')"
- def test_DeferredVector_not_iterable():
- assert not iterable(DeferredVector('X'))
- def test_DeferredVector_Matrix():
- raises(TypeError, lambda: Matrix(DeferredVector("V")))
- def test_GramSchmidt():
- R = Rational
- m1 = Matrix(1, 2, [1, 2])
- m2 = Matrix(1, 2, [2, 3])
- assert GramSchmidt([m1, m2]) == \
- [Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])]
- assert GramSchmidt([m1.T, m2.T]) == \
- [Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])]
- # from wikipedia
- assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [
- Matrix([3*sqrt(10)/10, sqrt(10)/10]),
- Matrix([-sqrt(10)/10, 3*sqrt(10)/10])]
- # https://github.com/sympy/sympy/issues/9488
- L = FiniteSet(Matrix([1]))
- assert GramSchmidt(L) == [Matrix([[1]])]
- def test_casoratian():
- assert casoratian([1, 2, 3, 4], 1) == 0
- assert casoratian([1, 2, 3, 4], 1, zero=False) == 0
- def test_zero_dimension_multiply():
- assert (Matrix()*zeros(0, 3)).shape == (0, 3)
- assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3)
- assert zeros(0, 3)*zeros(3, 0) == Matrix()
- def test_slice_issue_2884():
- m = Matrix(2, 2, range(4))
- assert m[1, :] == Matrix([[2, 3]])
- assert m[-1, :] == Matrix([[2, 3]])
- assert m[:, 1] == Matrix([[1, 3]]).T
- assert m[:, -1] == Matrix([[1, 3]]).T
- raises(IndexError, lambda: m[2, :])
- raises(IndexError, lambda: m[2, 2])
- def test_slice_issue_3401():
- assert zeros(0, 3)[:, -1].shape == (0, 1)
- assert zeros(3, 0)[0, :] == Matrix(1, 0, [])
- def test_copyin():
- s = zeros(3, 3)
- s[3] = 1
- assert s[:, 0] == Matrix([0, 1, 0])
- assert s[3] == 1
- assert s[3: 4] == [1]
- s[1, 1] = 42
- assert s[1, 1] == 42
- assert s[1, 1:] == Matrix([[42, 0]])
- s[1, 1:] = Matrix([[5, 6]])
- assert s[1, :] == Matrix([[1, 5, 6]])
- s[1, 1:] = [[42, 43]]
- assert s[1, :] == Matrix([[1, 42, 43]])
- s[0, 0] = 17
- assert s[:, :1] == Matrix([17, 1, 0])
- s[0, 0] = [1, 1, 1]
- assert s[:, 0] == Matrix([1, 1, 1])
- s[0, 0] = Matrix([1, 1, 1])
- assert s[:, 0] == Matrix([1, 1, 1])
- s[0, 0] = SparseMatrix([1, 1, 1])
- assert s[:, 0] == Matrix([1, 1, 1])
- def test_invertible_check():
- # sometimes a singular matrix will have a pivot vector shorter than
- # the number of rows in a matrix...
- assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,))
- raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv())
- m = Matrix([
- [-1, -1, 0],
- [ x, 1, 1],
- [ 1, x, -1],
- ])
- assert len(m.rref()[1]) != m.rows
- # in addition, unless simplify=True in the call to rref, the identity
- # matrix will be returned even though m is not invertible
- assert m.rref()[0] != eye(3)
- assert m.rref(simplify=signsimp)[0] != eye(3)
- raises(ValueError, lambda: m.inv(method="ADJ"))
- raises(ValueError, lambda: m.inv(method="GE"))
- raises(ValueError, lambda: m.inv(method="LU"))
- def test_issue_3959():
- x, y = symbols('x, y')
- e = x*y
- assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y
- def test_issue_5964():
- assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])'
- def test_issue_7604():
- x, y = symbols("x y")
- assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \
- 'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])'
- def test_is_Identity():
- assert eye(3).is_Identity
- assert eye(3).as_immutable().is_Identity
- assert not zeros(3).is_Identity
- assert not ones(3).is_Identity
- # issue 6242
- assert not Matrix([[1, 0, 0]]).is_Identity
- # issue 8854
- assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity
- assert not SparseMatrix(2,3, range(6)).is_Identity
- assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity
- assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity
- def test_dot():
- assert ones(1, 3).dot(ones(3, 1)) == 3
- assert ones(1, 3).dot([1, 1, 1]) == 3
- assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14
- assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I
- assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I
- assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I
- assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I
- assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I
- assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I
- assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5
- assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5
- raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test"))
- def test_dual():
- B_x, B_y, B_z, E_x, E_y, E_z = symbols(
- 'B_x B_y B_z E_x E_y E_z', real=True)
- F = Matrix((
- ( 0, E_x, E_y, E_z),
- (-E_x, 0, B_z, -B_y),
- (-E_y, -B_z, 0, B_x),
- (-E_z, B_y, -B_x, 0)
- ))
- Fd = Matrix((
- ( 0, -B_x, -B_y, -B_z),
- (B_x, 0, E_z, -E_y),
- (B_y, -E_z, 0, E_x),
- (B_z, E_y, -E_x, 0)
- ))
- assert F.dual().equals(Fd)
- assert eye(3).dual().equals(zeros(3))
- assert F.dual().dual().equals(-F)
- def test_anti_symmetric():
- assert Matrix([1, 2]).is_anti_symmetric() is False
- m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0])
- assert m.is_anti_symmetric() is True
- assert m.is_anti_symmetric(simplify=False) is False
- assert m.is_anti_symmetric(simplify=lambda x: x) is False
- # tweak to fail
- m[2, 1] = -m[2, 1]
- assert m.is_anti_symmetric() is False
- # untweak
- m[2, 1] = -m[2, 1]
- m = m.expand()
- assert m.is_anti_symmetric(simplify=False) is True
- m[0, 0] = 1
- assert m.is_anti_symmetric() is False
- def test_normalize_sort_diogonalization():
- A = Matrix(((1, 2), (2, 1)))
- P, Q = A.diagonalize(normalize=True)
- assert P*P.T == P.T*P == eye(P.cols)
- P, Q = A.diagonalize(normalize=True, sort=True)
- assert P*P.T == P.T*P == eye(P.cols)
- assert P*Q*P.inv() == A
- def test_issue_5321():
- raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])]))
- def test_issue_5320():
- assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([
- [1, 0, 2, 0],
- [0, 1, 0, 2]
- ])
- assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([
- [1, 0],
- [0, 1],
- [2, 0],
- [0, 2]
- ])
- cls = SparseMatrix
- assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([
- [1, 0, 2, 0],
- [0, 1, 0, 2]
- ])
- def test_issue_11944():
- A = Matrix([[1]])
- AIm = sympify(A)
- assert Matrix.hstack(AIm, A) == Matrix([[1, 1]])
- assert Matrix.vstack(AIm, A) == Matrix([[1], [1]])
- def test_cross():
- a = [1, 2, 3]
- b = [3, 4, 5]
- col = Matrix([-2, 4, -2])
- row = col.T
- def test(M, ans):
- assert ans == M
- assert type(M) == cls
- for cls in classes:
- A = cls(a)
- B = cls(b)
- test(A.cross(B), col)
- test(A.cross(B.T), col)
- test(A.T.cross(B.T), row)
- test(A.T.cross(B), row)
- raises(ShapeError, lambda:
- Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1])))
- def test_hash():
- for cls in classes[-2:]:
- s = {cls.eye(1), cls.eye(1)}
- assert len(s) == 1 and s.pop() == cls.eye(1)
- # issue 3979
- for cls in classes[:2]:
- assert not isinstance(cls.eye(1), Hashable)
- @XFAIL
- def test_issue_3979():
- # when this passes, delete this and change the [1:2]
- # to [:2] in the test_hash above for issue 3979
- cls = classes[0]
- raises(AttributeError, lambda: hash(cls.eye(1)))
- def test_adjoint():
- dat = [[0, I], [1, 0]]
- ans = Matrix([[0, 1], [-I, 0]])
- for cls in classes:
- assert ans == cls(dat).adjoint()
- def test_simplify_immutable():
- assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \
- ImmutableMatrix([[1]])
- def test_replace():
- F, G = symbols('F, G', cls=Function)
- K = Matrix(2, 2, lambda i, j: G(i+j))
- M = Matrix(2, 2, lambda i, j: F(i+j))
- N = M.replace(F, G)
- assert N == K
- def test_replace_map():
- F, G = symbols('F, G', cls=Function)
- with warns_deprecated_sympy():
- K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}),
- (G(1), {F(1): G(1)}), (G(2), {F(2): G(2)})])
- M = Matrix(2, 2, lambda i, j: F(i+j))
- with warns(SymPyDeprecationWarning, test_stacklevel=False):
- N = M.replace(F, G, True)
- assert N == K
- def test_atoms():
- m = Matrix([[1, 2], [x, 1 - 1/x]])
- assert m.atoms() == {S.One,S(2),S.NegativeOne, x}
- assert m.atoms(Symbol) == {x}
- def test_pinv():
- # Pseudoinverse of an invertible matrix is the inverse.
- A1 = Matrix([[a, b], [c, d]])
- assert simplify(A1.pinv(method="RD")) == simplify(A1.inv())
- # Test the four properties of the pseudoinverse for various matrices.
- As = [Matrix([[13, 104], [2212, 3], [-3, 5]]),
- Matrix([[1, 7, 9], [11, 17, 19]]),
- Matrix([a, b])]
- for A in As:
- A_pinv = A.pinv(method="RD")
- AAp = A * A_pinv
- ApA = A_pinv * A
- assert simplify(AAp * A) == A
- assert simplify(ApA * A_pinv) == A_pinv
- assert AAp.H == AAp
- assert ApA.H == ApA
- # XXX Pinv with diagonalization makes expression too complicated.
- for A in As:
- A_pinv = simplify(A.pinv(method="ED"))
- AAp = A * A_pinv
- ApA = A_pinv * A
- assert simplify(AAp * A) == A
- assert simplify(ApA * A_pinv) == A_pinv
- assert AAp.H == AAp
- assert ApA.H == ApA
- # XXX Computing pinv using diagonalization makes an expression that
- # is too complicated to simplify.
- # A1 = Matrix([[a, b], [c, d]])
- # assert simplify(A1.pinv(method="ED")) == simplify(A1.inv())
- # so this is tested numerically at a fixed random point
- from sympy.core.numbers import comp
- q = A1.pinv(method="ED")
- w = A1.inv()
- reps = {a: -73633, b: 11362, c: 55486, d: 62570}
- assert all(
- comp(i.n(), j.n())
- for i, j in zip(q.subs(reps), w.subs(reps))
- )
- @slow
- @XFAIL
- def test_pinv_rank_deficient_when_diagonalization_fails():
- # Test the four properties of the pseudoinverse for matrices when
- # diagonalization of A.H*A fails.
- As = [
- Matrix([
- [61, 89, 55, 20, 71, 0],
- [62, 96, 85, 85, 16, 0],
- [69, 56, 17, 4, 54, 0],
- [10, 54, 91, 41, 71, 0],
- [ 7, 30, 10, 48, 90, 0],
- [0, 0, 0, 0, 0, 0]])
- ]
- for A in As:
- A_pinv = A.pinv(method="ED")
- AAp = A * A_pinv
- ApA = A_pinv * A
- assert AAp.H == AAp
- assert ApA.H == ApA
- def test_issue_7201():
- assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, [])
- assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, [])
- def test_free_symbols():
- for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix:
- assert M([[x], [0]]).free_symbols == {x}
- def test_from_ndarray():
- """See issue 7465."""
- try:
- from numpy import array
- except ImportError:
- skip('NumPy must be available to test creating matrices from ndarrays')
- assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3])
- assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]])
- assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \
- Matrix([[1, 2, 3], [4, 5, 6]])
- assert Matrix(array([x, y, z])) == Matrix([x, y, z])
- raises(NotImplementedError,
- lambda: Matrix(array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])))
- assert Matrix([array([1, 2]), array([3, 4])]) == Matrix([[1, 2], [3, 4]])
- assert Matrix([array([1, 2]), [3, 4]]) == Matrix([[1, 2], [3, 4]])
- assert Matrix([array([]), array([])]) == Matrix([])
- def test_17522_numpy():
- from sympy.matrices.common import _matrixify
- try:
- from numpy import array, matrix
- except ImportError:
- skip('NumPy must be available to test indexing matrixified NumPy ndarrays and matrices')
- m = _matrixify(array([[1, 2], [3, 4]]))
- assert m[3] == 4
- assert list(m) == [1, 2, 3, 4]
- with ignore_warnings(PendingDeprecationWarning):
- m = _matrixify(matrix([[1, 2], [3, 4]]))
- assert m[3] == 4
- assert list(m) == [1, 2, 3, 4]
- def test_17522_mpmath():
- from sympy.matrices.common import _matrixify
- try:
- from mpmath import matrix
- except ImportError:
- skip('mpmath must be available to test indexing matrixified mpmath matrices')
- m = _matrixify(matrix([[1, 2], [3, 4]]))
- assert m[3] == 4.0
- assert list(m) == [1.0, 2.0, 3.0, 4.0]
- def test_17522_scipy():
- from sympy.matrices.common import _matrixify
- try:
- from scipy.sparse import csr_matrix
- except ImportError:
- skip('SciPy must be available to test indexing matrixified SciPy sparse matrices')
- m = _matrixify(csr_matrix([[1, 2], [3, 4]]))
- assert m[3] == 4
- assert list(m) == [1, 2, 3, 4]
- def test_hermitian():
- a = Matrix([[1, I], [-I, 1]])
- assert a.is_hermitian
- a[0, 0] = 2*I
- assert a.is_hermitian is False
- a[0, 0] = x
- assert a.is_hermitian is None
- a[0, 1] = a[1, 0]*I
- assert a.is_hermitian is False
- def test_doit():
- a = Matrix([[Add(x,x, evaluate=False)]])
- assert a[0] != 2*x
- assert a.doit() == Matrix([[2*x]])
- def test_issue_9457_9467_9876():
- # for row_del(index)
- M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- M.row_del(1)
- assert M == Matrix([[1, 2, 3], [3, 4, 5]])
- N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- N.row_del(-2)
- assert N == Matrix([[1, 2, 3], [3, 4, 5]])
- O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]])
- O.row_del(-1)
- assert O == Matrix([[1, 2, 3], [5, 6, 7]])
- P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- raises(IndexError, lambda: P.row_del(10))
- Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- raises(IndexError, lambda: Q.row_del(-10))
- # for col_del(index)
- M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- M.col_del(1)
- assert M == Matrix([[1, 3], [2, 4], [3, 5]])
- N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- N.col_del(-2)
- assert N == Matrix([[1, 3], [2, 4], [3, 5]])
- P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- raises(IndexError, lambda: P.col_del(10))
- Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- raises(IndexError, lambda: Q.col_del(-10))
- def test_issue_9422():
- x, y = symbols('x y', commutative=False)
- a, b = symbols('a b')
- M = eye(2)
- M1 = Matrix(2, 2, [x, y, y, z])
- assert y*x*M != x*y*M
- assert b*a*M == a*b*M
- assert x*M1 != M1*x
- assert a*M1 == M1*a
- assert y*x*M == Matrix([[y*x, 0], [0, y*x]])
- def test_issue_10770():
- M = Matrix([])
- a = ['col_insert', 'row_join'], Matrix([9, 6, 3])
- b = ['row_insert', 'col_join'], a[1].T
- c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]])
- for ops, m in (a, b, c):
- for op in ops:
- f = getattr(M, op)
- new = f(m) if 'join' in op else f(42, m)
- assert new == m and id(new) != id(m)
- def test_issue_10658():
- A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- assert A.extract([0, 1, 2], [True, True, False]) == \
- Matrix([[1, 2], [4, 5], [7, 8]])
- assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]])
- assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]])
- assert A.extract([True, False, True], [0, 1, 2]) == \
- Matrix([[1, 2, 3], [7, 8, 9]])
- assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, [])
- assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, [])
- assert A.extract([True, False, True], [False, True, False]) == \
- Matrix([[2], [8]])
- def test_opportunistic_simplification():
- # this test relates to issue #10718, #9480, #11434
- # issue #9480
- m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]])
- assert m.rank() == 1
- # issue #10781
- m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]])
- assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2)
- # issue #11434
- ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1')
- m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]])
- assert m.rank() == 4
- def test_partial_pivoting():
- # example from https://en.wikipedia.org/wiki/Pivot_element
- # partial pivoting with back substitution gives a perfect result
- # naive pivoting give an error ~1e-13, so anything better than
- # 1e-15 is good
- mm=Matrix([[0.003, 59.14, 59.17], [5.291, -6.13, 46.78]])
- assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0],
- [ 0, 1.0, 1.0]])).norm() < 1e-15
- # issue #11549
- m_mixed = Matrix([[6e-17, 1.0, 4],
- [ -1.0, 0, 8],
- [ 0, 0, 1]])
- m_float = Matrix([[6e-17, 1.0, 4.],
- [ -1.0, 0., 8.],
- [ 0., 0., 1.]])
- m_inv = Matrix([[ 0, -1.0, 8.0],
- [1.0, 6.0e-17, -4.0],
- [ 0, 0, 1]])
- # this example is numerically unstable and involves a matrix with a norm >= 8,
- # this comparing the difference of the results with 1e-15 is numerically sound.
- assert (m_mixed.inv() - m_inv).norm() < 1e-15
- assert (m_float.inv() - m_inv).norm() < 1e-15
- def test_iszero_substitution():
- """ When doing numerical computations, all elements that pass
- the iszerofunc test should be set to numerically zero if they
- aren't already. """
- # Matrix from issue #9060
- m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]])
- m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0]
- m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]])
- m_diff = m_rref - m_correct
- assert m_diff.norm() < 1e-15
- # if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16
- assert m_rref[2,2] == 0
- def test_issue_11238():
- from sympy.geometry.point import Point
- xx = 8*tan(pi*Rational(13, 45))/(tan(pi*Rational(13, 45)) + sqrt(3))
- yy = (-8*sqrt(3)*tan(pi*Rational(13, 45))**2 + 24*tan(pi*Rational(13, 45)))/(-3 + tan(pi*Rational(13, 45))**2)
- p1 = Point(0, 0)
- p2 = Point(1, -sqrt(3))
- p0 = Point(xx,yy)
- m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)])
- m2 = Matrix([p1 - p0, p2 - p0])
- m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)])
- # This system has expressions which are zero and
- # cannot be easily proved to be such, so without
- # numerical testing, these assertions will fail.
- Z = lambda x: abs(x.n()) < 1e-20
- assert m1.rank(simplify=True, iszerofunc=Z) == 1
- assert m2.rank(simplify=True, iszerofunc=Z) == 1
- assert m3.rank(simplify=True, iszerofunc=Z) == 1
- def test_as_real_imag():
- m1 = Matrix(2,2,[1,2,3,4])
- m2 = m1*S.ImaginaryUnit
- m3 = m1 + m2
- for kls in classes:
- a,b = kls(m3).as_real_imag()
- assert list(a) == list(m1)
- assert list(b) == list(m1)
- def test_deprecated():
- # Maintain tests for deprecated functions. We must capture
- # the deprecation warnings. When the deprecated functionality is
- # removed, the corresponding tests should be removed.
- m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2])
- P, Jcells = m.jordan_cells()
- assert Jcells[1] == Matrix(1, 1, [2])
- assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2])
- def test_issue_14489():
- from sympy.core.mod import Mod
- A = Matrix([-1, 1, 2])
- B = Matrix([10, 20, -15])
- assert Mod(A, 3) == Matrix([2, 1, 2])
- assert Mod(B, 4) == Matrix([2, 0, 1])
- def test_issue_14943():
- # Test that __array__ accepts the optional dtype argument
- try:
- from numpy import array
- except ImportError:
- skip('NumPy must be available to test creating matrices from ndarrays')
- M = Matrix([[1,2], [3,4]])
- assert array(M, dtype=float).dtype.name == 'float64'
- def test_case_6913():
- m = MatrixSymbol('m', 1, 1)
- a = Symbol("a")
- a = m[0, 0]>0
- assert str(a) == 'm[0, 0] > 0'
- def test_issue_11948():
- A = MatrixSymbol('A', 3, 3)
- a = Wild('a')
- assert A.match(a) == {a: A}
- def test_gramschmidt_conjugate_dot():
- vecs = [Matrix([1, I]), Matrix([1, -I])]
- assert Matrix.orthogonalize(*vecs) == \
- [Matrix([[1], [I]]), Matrix([[1], [-I]])]
- vecs = [Matrix([1, I, 0]), Matrix([I, 0, -I])]
- assert Matrix.orthogonalize(*vecs) == \
- [Matrix([[1], [I], [0]]), Matrix([[I/2], [S(1)/2], [-I]])]
- mat = Matrix([[1, I], [1, -I]])
- Q, R = mat.QRdecomposition()
- assert Q * Q.H == Matrix.eye(2)
- def test_issue_8207():
- a = Matrix(MatrixSymbol('a', 3, 1))
- b = Matrix(MatrixSymbol('b', 3, 1))
- c = a.dot(b)
- d = diff(c, a[0, 0])
- e = diff(d, a[0, 0])
- assert d == b[0, 0]
- assert e == 0
- def test_func():
- from sympy.simplify.simplify import nthroot
- A = Matrix([[1, 2],[0, 3]])
- assert A.analytic_func(sin(x*t), x) == Matrix([[sin(t), sin(3*t) - sin(t)], [0, sin(3*t)]])
- A = Matrix([[2, 1],[1, 2]])
- assert (pi * A / 6).analytic_func(cos(x), x) == Matrix([[sqrt(3)/4, -sqrt(3)/4], [-sqrt(3)/4, sqrt(3)/4]])
- raises(ValueError, lambda : zeros(5).analytic_func(log(x), x))
- raises(ValueError, lambda : (A*x).analytic_func(log(x), x))
- A = Matrix([[0, -1, -2, 3], [0, -1, -2, 3], [0, 1, 0, -1], [0, 0, -1, 1]])
- assert A.analytic_func(exp(x), x) == A.exp()
- raises(ValueError, lambda : A.analytic_func(sqrt(x), x))
- A = Matrix([[41, 12],[12, 34]])
- assert simplify(A.analytic_func(sqrt(x), x)**2) == A
- A = Matrix([[3, -12, 4], [-1, 0, -2], [-1, 5, -1]])
- assert simplify(A.analytic_func(nthroot(x, 3), x)**3) == A
- A = Matrix([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]])
- assert A.analytic_func(exp(x), x) == A.exp()
- A = Matrix([[0, 2, 1, 6], [0, 0, 1, 2], [0, 0, 0, 3], [0, 0, 0, 0]])
- assert A.analytic_func(exp(x*t), x) == expand(simplify((A*t).exp()))
- @skip_under_pyodide("Cannot create threads under pyodide.")
- def test_issue_19809():
- def f():
- assert _dotprodsimp_state.state == None
- m = Matrix([[1]])
- m = m * m
- return True
- with dotprodsimp(True):
- with concurrent.futures.ThreadPoolExecutor() as executor:
- future = executor.submit(f)
- assert future.result()
- def test_issue_23276():
- M = Matrix([x, y])
- assert integrate(M, (x, 0, 1), (y, 0, 1)) == Matrix([
- [S.Half],
- [S.Half]])
|