123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- '''Functions returning normal forms of matrices'''
- from sympy.polys.domains.integerring import ZZ
- from sympy.polys.polytools import Poly
- from sympy.polys.matrices import DomainMatrix
- from sympy.polys.matrices.normalforms import (
- smith_normal_form as _snf,
- invariant_factors as _invf,
- hermite_normal_form as _hnf,
- )
- def _to_domain(m, domain=None):
- """Convert Matrix to DomainMatrix"""
- # XXX: deprecated support for RawMatrix:
- ring = getattr(m, "ring", None)
- m = m.applyfunc(lambda e: e.as_expr() if isinstance(e, Poly) else e)
- dM = DomainMatrix.from_Matrix(m)
- domain = domain or ring
- if domain is not None:
- dM = dM.convert_to(domain)
- return dM
- def smith_normal_form(m, domain=None):
- '''
- Return the Smith Normal Form of a matrix `m` over the ring `domain`.
- This will only work if the ring is a principal ideal domain.
- Examples
- ========
- >>> from sympy import Matrix, ZZ
- >>> from sympy.matrices.normalforms import smith_normal_form
- >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
- >>> print(smith_normal_form(m, domain=ZZ))
- Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
- '''
- dM = _to_domain(m, domain)
- return _snf(dM).to_Matrix()
- def invariant_factors(m, domain=None):
- '''
- Return the tuple of abelian invariants for a matrix `m`
- (as in the Smith-Normal form)
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
- .. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
- '''
- dM = _to_domain(m, domain)
- factors = _invf(dM)
- factors = tuple(dM.domain.to_sympy(f) for f in factors)
- # XXX: deprecated.
- if hasattr(m, "ring"):
- if m.ring.is_PolynomialRing:
- K = m.ring
- to_poly = lambda f: Poly(f, K.symbols, domain=K.domain)
- factors = tuple(to_poly(f) for f in factors)
- return factors
- def hermite_normal_form(A, *, D=None, check_rank=False):
- r"""
- Compute the Hermite Normal Form of a Matrix *A* of integers.
- Examples
- ========
- >>> from sympy import Matrix
- >>> from sympy.matrices.normalforms import hermite_normal_form
- >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
- >>> print(hermite_normal_form(m))
- Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
- Parameters
- ==========
- A : $m \times n$ ``Matrix`` of integers.
- D : int, optional
- Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
- being any multiple of $\det(W)$ may be provided. In this case, if *A*
- also has rank $m$, then we may use an alternative algorithm that works
- mod *D* in order to prevent coefficient explosion.
- check_rank : boolean, optional (default=False)
- The basic assumption is that, if you pass a value for *D*, then
- you already believe that *A* has rank $m$, so we do not waste time
- checking it for you. If you do want this to be checked (and the
- ordinary, non-modulo *D* algorithm to be used if the check fails), then
- set *check_rank* to ``True``.
- Returns
- =======
- ``Matrix``
- The HNF of matrix *A*.
- Raises
- ======
- DMDomainError
- If the domain of the matrix is not :ref:`ZZ`.
- DMShapeError
- If the mod *D* algorithm is used but the matrix has more rows than
- columns.
- References
- ==========
- .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
- (See Algorithms 2.4.5 and 2.4.8.)
- """
- # Accept any of Python int, SymPy Integer, and ZZ itself:
- if D is not None and not ZZ.of_type(D):
- D = ZZ(int(D))
- return _hnf(A._rep, D=D, check_rank=check_rank).to_Matrix()
|