123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.simplify.powsimp import powsimp
- from sympy.testing.pytest import raises
- from sympy.core.expr import unchanged
- from sympy.core import symbols, S
- from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix, OneMatrix, Matrix
- from sympy.matrices.common import NonSquareMatrixError
- from sympy.matrices.expressions import MatPow, MatAdd, MatMul
- from sympy.matrices.expressions.inverse import Inverse
- from sympy.matrices.expressions.matexpr import MatrixElement
- n, m, l, k = symbols('n m l k', integer=True)
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', m, l)
- C = MatrixSymbol('C', n, n)
- D = MatrixSymbol('D', n, n)
- E = MatrixSymbol('E', m, n)
- def test_entry_matrix():
- X = ImmutableMatrix([[1, 2], [3, 4]])
- assert MatPow(X, 0)[0, 0] == 1
- assert MatPow(X, 0)[0, 1] == 0
- assert MatPow(X, 1)[0, 0] == 1
- assert MatPow(X, 1)[0, 1] == 2
- assert MatPow(X, 2)[0, 0] == 7
- def test_entry_symbol():
- from sympy.concrete import Sum
- assert MatPow(C, 0)[0, 0] == 1
- assert MatPow(C, 0)[0, 1] == 0
- assert MatPow(C, 1)[0, 0] == C[0, 0]
- assert isinstance(MatPow(C, 2)[0, 0], Sum)
- assert isinstance(MatPow(C, n)[0, 0], MatrixElement)
- def test_as_explicit_symbol():
- X = MatrixSymbol('X', 2, 2)
- assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2))
- assert MatPow(X, 1).as_explicit() == X.as_explicit()
- assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2
- assert MatPow(X, n).as_explicit() == ImmutableMatrix([
- [(X ** n)[0, 0], (X ** n)[0, 1]],
- [(X ** n)[1, 0], (X ** n)[1, 1]],
- ])
- a = MatrixSymbol("a", 3, 1)
- b = MatrixSymbol("b", 3, 1)
- c = MatrixSymbol("c", 3, 1)
- expr = (a.T*b)**S.Half
- assert expr.as_explicit() == Matrix([[sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])]])
- expr = c*(a.T*b)**S.Half
- m = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
- assert expr.as_explicit() == Matrix([[c[0, 0]*m], [c[1, 0]*m], [c[2, 0]*m]])
- expr = (a*b.T)**S.Half
- denom = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
- expected = (a*b.T).as_explicit()/denom
- assert expr.as_explicit() == expected
- expr = X**-1
- det = X[0, 0]*X[1, 1] - X[1, 0]*X[0, 1]
- expected = Matrix([[X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]])/det
- assert expr.as_explicit() == expected
- expr = X**m
- assert expr.as_explicit() == X.as_explicit()**m
- def test_as_explicit_matrix():
- A = ImmutableMatrix([[1, 2], [3, 4]])
- assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2))
- assert MatPow(A, 1).as_explicit() == A
- assert MatPow(A, 2).as_explicit() == A**2
- assert MatPow(A, -1).as_explicit() == A.inv()
- assert MatPow(A, -2).as_explicit() == (A.inv())**2
- # less expensive than testing on a 2x2
- A = ImmutableMatrix([4])
- assert MatPow(A, S.Half).as_explicit() == A**S.Half
- def test_doit_symbol():
- assert MatPow(C, 0).doit() == Identity(n)
- assert MatPow(C, 1).doit() == C
- assert MatPow(C, -1).doit() == C.I
- for r in [2, S.Half, S.Pi, n]:
- assert MatPow(C, r).doit() == MatPow(C, r)
- def test_doit_matrix():
- X = ImmutableMatrix([[1, 2], [3, 4]])
- assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2))
- assert MatPow(X, 1).doit() == X
- assert MatPow(X, 2).doit() == X**2
- assert MatPow(X, -1).doit() == X.inv()
- assert MatPow(X, -2).doit() == (X.inv())**2
- # less expensive than testing on a 2x2
- assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2])
- X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0
- raises(ValueError, lambda: MatPow(X,-1).doit())
- raises(ValueError, lambda: MatPow(X,-2).doit())
- def test_nonsquare():
- A = MatrixSymbol('A', 2, 3)
- B = ImmutableMatrix([[1, 2, 3], [4, 5, 6]])
- for r in [-1, 0, 1, 2, S.Half, S.Pi, n]:
- raises(NonSquareMatrixError, lambda: MatPow(A, r))
- raises(NonSquareMatrixError, lambda: MatPow(B, r))
- def test_doit_equals_pow(): #17179
- X = ImmutableMatrix ([[1,0],[0,1]])
- assert MatPow(X, n).doit() == X**n == X
- def test_doit_nested_MatrixExpr():
- X = ImmutableMatrix([[1, 2], [3, 4]])
- Y = ImmutableMatrix([[2, 3], [4, 5]])
- assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2
- assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2
- def test_identity_power():
- k = Identity(n)
- assert MatPow(k, 4).doit() == k
- assert MatPow(k, n).doit() == k
- assert MatPow(k, -3).doit() == k
- assert MatPow(k, 0).doit() == k
- l = Identity(3)
- assert MatPow(l, n).doit() == l
- assert MatPow(l, -1).doit() == l
- assert MatPow(l, 0).doit() == l
- def test_zero_power():
- z1 = ZeroMatrix(n, n)
- assert MatPow(z1, 3).doit() == z1
- raises(ValueError, lambda:MatPow(z1, -1).doit())
- assert MatPow(z1, 0).doit() == Identity(n)
- assert MatPow(z1, n).doit() == z1
- raises(ValueError, lambda:MatPow(z1, -2).doit())
- z2 = ZeroMatrix(4, 4)
- assert MatPow(z2, n).doit() == z2
- raises(ValueError, lambda:MatPow(z2, -3).doit())
- assert MatPow(z2, 2).doit() == z2
- assert MatPow(z2, 0).doit() == Identity(4)
- raises(ValueError, lambda:MatPow(z2, -1).doit())
- def test_OneMatrix_power():
- o = OneMatrix(3, 3)
- assert o ** 0 == Identity(3)
- assert o ** 1 == o
- assert o * o == o ** 2 == 3 * o
- assert o * o * o == o ** 3 == 9 * o
- o = OneMatrix(n, n)
- assert o * o == o ** 2 == n * o
- # powsimp necessary as n ** (n - 2) * n does not produce n ** (n - 1)
- assert powsimp(o ** (n - 1) * o) == o ** n == n ** (n - 1) * o
- def test_transpose_power():
- from sympy.matrices.expressions.transpose import Transpose as TP
- assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5
- assert ((C*D).T**5).T == (C*D)**5
- assert (C.T.I.T)**7 == C**-7
- assert (C.T**l).T**k == C**(l*k)
- assert ((E.T * A.T)**5).T == (A*E)**5
- assert ((A*E).T**5).T**7 == (A*E)**35
- assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5
- assert ((D*C)**-5).T**-5 == ((D*C)**25).T
- assert (((D*C)**l).T**k).T == (D*C)**(l*k)
- def test_Inverse():
- assert Inverse(MatPow(C, 0)).doit() == Identity(n)
- assert Inverse(MatPow(C, 1)).doit() == Inverse(C)
- assert Inverse(MatPow(C, 2)).doit() == MatPow(C, -2)
- assert Inverse(MatPow(C, -1)).doit() == C
- assert MatPow(Inverse(C), 0).doit() == Identity(n)
- assert MatPow(Inverse(C), 1).doit() == Inverse(C)
- assert MatPow(Inverse(C), 2).doit() == MatPow(C, -2)
- assert MatPow(Inverse(C), -1).doit() == C
- def test_combine_powers():
- assert (C ** 1) ** 1 == C
- assert (C ** 2) ** 3 == MatPow(C, 6)
- assert (C ** -2) ** -3 == MatPow(C, 6)
- assert (C ** -1) ** -1 == C
- assert (((C ** 2) ** 3) ** 4) ** 5 == MatPow(C, 120)
- assert (C ** n) ** n == C ** (n ** 2)
- def test_unchanged():
- assert unchanged(MatPow, C, 0)
- assert unchanged(MatPow, C, 1)
- assert unchanged(MatPow, Inverse(C), -1)
- assert unchanged(Inverse, MatPow(C, -1), -1)
- assert unchanged(MatPow, MatPow(C, -1), -1)
- assert unchanged(MatPow, MatPow(C, 1), 1)
- def test_no_exponentiation():
- # if this passes, Pow.as_numer_denom should recognize
- # MatAdd as exponent
- raises(NotImplementedError, lambda: 3**(-2*C))
|