test_matexpr.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.exprtools import gcd_terms
  3. from sympy.core.function import (diff, expand)
  4. from sympy.core.relational import Eq
  5. from sympy.core.symbol import (Dummy, Symbol, Str)
  6. from sympy.functions.special.tensor_functions import KroneckerDelta
  7. from sympy.matrices.dense import zeros
  8. from sympy.polys.polytools import factor
  9. from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
  10. Function)
  11. from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
  12. from sympy.simplify import simplify
  13. from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
  14. MatPow, Matrix, MatrixExpr, MatrixSymbol,
  15. SparseMatrix, Transpose, Adjoint, MatrixSet)
  16. from sympy.matrices.common import NonSquareMatrixError
  17. from sympy.matrices.expressions.determinant import Determinant, det
  18. from sympy.matrices.expressions.matexpr import MatrixElement
  19. from sympy.matrices.expressions.special import ZeroMatrix, Identity
  20. from sympy.testing.pytest import raises, XFAIL
  21. n, m, l, k, p = symbols('n m l k p', integer=True)
  22. x = symbols('x')
  23. A = MatrixSymbol('A', n, m)
  24. B = MatrixSymbol('B', m, l)
  25. C = MatrixSymbol('C', n, n)
  26. D = MatrixSymbol('D', n, n)
  27. E = MatrixSymbol('E', m, n)
  28. w = MatrixSymbol('w', n, 1)
  29. def test_matrix_symbol_creation():
  30. assert MatrixSymbol('A', 2, 2)
  31. assert MatrixSymbol('A', 0, 0)
  32. raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
  33. raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
  34. raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
  35. raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
  36. raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
  37. raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))
  38. n = symbols('n')
  39. assert MatrixSymbol('A', n, n)
  40. n = symbols('n', integer=False)
  41. raises(ValueError, lambda: MatrixSymbol('A', n, n))
  42. n = symbols('n', negative=True)
  43. raises(ValueError, lambda: MatrixSymbol('A', n, n))
  44. def test_matexpr_properties():
  45. assert A.shape == (n, m)
  46. assert (A * B).shape == (n, l)
  47. assert A[0, 1].indices == (0, 1)
  48. assert A[0, 0].symbol == A
  49. assert A[0, 0].symbol.name == 'A'
  50. def test_matexpr():
  51. assert (x*A).shape == A.shape
  52. assert (x*A).__class__ == MatMul
  53. assert 2*A - A - A == ZeroMatrix(*A.shape)
  54. assert (A*B).shape == (n, l)
  55. def test_matexpr_subs():
  56. A = MatrixSymbol('A', n, m)
  57. B = MatrixSymbol('B', m, l)
  58. C = MatrixSymbol('C', m, l)
  59. assert A.subs(n, m).shape == (m, m)
  60. assert (A*B).subs(B, C) == A*C
  61. assert (A*B).subs(l, n).is_square
  62. W = MatrixSymbol("W", 3, 3)
  63. X = MatrixSymbol("X", 2, 2)
  64. Y = MatrixSymbol("Y", 1, 2)
  65. Z = MatrixSymbol("Z", n, 2)
  66. # no restrictions on Symbol replacement
  67. assert X.subs(X, Y) == Y
  68. # it might be better to just change the name
  69. y = Str('y')
  70. assert X.subs(Str("X"), y).args == (y, 2, 2)
  71. # it's ok to introduce a wider matrix
  72. assert X[1, 1].subs(X, W) == W[1, 1]
  73. # but for a given MatrixExpression, only change
  74. # name if indexing on the new shape is valid.
  75. # Here, X is 2,2; Y is 1,2 and Y[1, 1] is out
  76. # of range so an error is raised
  77. raises(IndexError, lambda: X[1, 1].subs(X, Y))
  78. # here, [0, 1] is in range so the subs succeeds
  79. assert X[0, 1].subs(X, Y) == Y[0, 1]
  80. # and here the size of n will accept any index
  81. # in the first position
  82. assert W[2, 1].subs(W, Z) == Z[2, 1]
  83. # but not in the second position
  84. raises(IndexError, lambda: W[2, 2].subs(W, Z))
  85. # any matrix should raise if invalid
  86. raises(IndexError, lambda: W[2, 2].subs(W, zeros(2)))
  87. A = SparseMatrix([[1, 2], [3, 4]])
  88. B = Matrix([[1, 2], [3, 4]])
  89. C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)
  90. assert (C*D).subs({C: A, D: B}) == MatMul(A, B)
  91. def test_addition():
  92. A = MatrixSymbol('A', n, m)
  93. B = MatrixSymbol('B', n, m)
  94. assert isinstance(A + B, MatAdd)
  95. assert (A + B).shape == A.shape
  96. assert isinstance(A - A + 2*B, MatMul)
  97. raises(TypeError, lambda: A + 1)
  98. raises(TypeError, lambda: 5 + A)
  99. raises(TypeError, lambda: 5 - A)
  100. assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
  101. raises(TypeError, lambda: ZeroMatrix(n, m) + S.Zero)
  102. def test_multiplication():
  103. A = MatrixSymbol('A', n, m)
  104. B = MatrixSymbol('B', m, l)
  105. C = MatrixSymbol('C', n, n)
  106. assert (2*A*B).shape == (n, l)
  107. assert (A*0*B) == ZeroMatrix(n, l)
  108. assert (2*A).shape == A.shape
  109. assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
  110. assert C * Identity(n) * C.I == Identity(n)
  111. assert B/2 == S.Half*B
  112. raises(NotImplementedError, lambda: 2/B)
  113. A = MatrixSymbol('A', n, n)
  114. B = MatrixSymbol('B', n, n)
  115. assert Identity(n) * (A + B) == A + B
  116. assert A**2*A == A**3
  117. assert A**2*(A.I)**3 == A.I
  118. assert A**3*(A.I)**2 == A
  119. def test_MatPow():
  120. A = MatrixSymbol('A', n, n)
  121. AA = MatPow(A, 2)
  122. assert AA.exp == 2
  123. assert AA.base == A
  124. assert (A**n).exp == n
  125. assert A**0 == Identity(n)
  126. assert A**1 == A
  127. assert A**2 == AA
  128. assert A**-1 == Inverse(A)
  129. assert (A**-1)**-1 == A
  130. assert (A**2)**3 == A**6
  131. assert A**S.Half == sqrt(A)
  132. assert A**Rational(1, 3) == cbrt(A)
  133. raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)
  134. def test_MatrixSymbol():
  135. n, m, t = symbols('n,m,t')
  136. X = MatrixSymbol('X', n, m)
  137. assert X.shape == (n, m)
  138. raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
  139. assert X.doit() == X
  140. def test_dense_conversion():
  141. X = MatrixSymbol('X', 2, 2)
  142. assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
  143. assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
  144. def test_free_symbols():
  145. assert (C*D).free_symbols == {C, D}
  146. def test_zero_matmul():
  147. assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
  148. def test_matadd_simplify():
  149. A = MatrixSymbol('A', 1, 1)
  150. assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
  151. MatAdd(A, Matrix([[1]]))
  152. def test_matmul_simplify():
  153. A = MatrixSymbol('A', 1, 1)
  154. assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
  155. MatMul(A, Matrix([[1]]))
  156. def test_invariants():
  157. A = MatrixSymbol('A', n, m)
  158. B = MatrixSymbol('B', m, l)
  159. X = MatrixSymbol('X', n, n)
  160. objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
  161. Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
  162. MatPow(X, 0)]
  163. for obj in objs:
  164. assert obj == obj.__class__(*obj.args)
  165. def test_matexpr_indexing():
  166. A = MatrixSymbol('A', n, m)
  167. A[1, 2]
  168. A[l, k]
  169. A[l + 1, k + 1]
  170. A = MatrixSymbol('A', 2, 1)
  171. for i in range(-2, 2):
  172. for j in range(-1, 1):
  173. A[i, j]
  174. def test_single_indexing():
  175. A = MatrixSymbol('A', 2, 3)
  176. assert A[1] == A[0, 1]
  177. assert A[int(1)] == A[0, 1]
  178. assert A[3] == A[1, 0]
  179. assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
  180. raises(IndexError, lambda: A[6])
  181. raises(IndexError, lambda: A[n])
  182. B = MatrixSymbol('B', n, m)
  183. raises(IndexError, lambda: B[1])
  184. B = MatrixSymbol('B', n, 3)
  185. assert B[3] == B[1, 0]
  186. def test_MatrixElement_commutative():
  187. assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
  188. def test_MatrixSymbol_determinant():
  189. A = MatrixSymbol('A', 4, 4)
  190. assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
  191. A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
  192. A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
  193. A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
  194. A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
  195. A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
  196. A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
  197. A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
  198. A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
  199. A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
  200. A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
  201. A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
  202. A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
  203. B = MatrixSymbol('B', 4, 4)
  204. assert Determinant(A + B).doit() == det(A + B) == (A + B).det()
  205. def test_MatrixElement_diff():
  206. assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
  207. def test_MatrixElement_doit():
  208. u = MatrixSymbol('u', 2, 1)
  209. v = ImmutableMatrix([3, 5])
  210. assert u[0, 0].subs(u, v).doit() == v[0, 0]
  211. def test_identity_powers():
  212. M = Identity(n)
  213. assert MatPow(M, 3).doit() == M**3
  214. assert M**n == M
  215. assert MatPow(M, 0).doit() == M**2
  216. assert M**-2 == M
  217. assert MatPow(M, -2).doit() == M**0
  218. N = Identity(3)
  219. assert MatPow(N, 2).doit() == N**n
  220. assert MatPow(N, 3).doit() == N
  221. assert MatPow(N, -2).doit() == N**4
  222. assert MatPow(N, 2).doit() == N**0
  223. def test_Zero_power():
  224. z1 = ZeroMatrix(n, n)
  225. assert z1**4 == z1
  226. raises(ValueError, lambda:z1**-2)
  227. assert z1**0 == Identity(n)
  228. assert MatPow(z1, 2).doit() == z1**2
  229. raises(ValueError, lambda:MatPow(z1, -2).doit())
  230. z2 = ZeroMatrix(3, 3)
  231. assert MatPow(z2, 4).doit() == z2**4
  232. raises(ValueError, lambda:z2**-3)
  233. assert z2**3 == MatPow(z2, 3).doit()
  234. assert z2**0 == Identity(3)
  235. raises(ValueError, lambda:MatPow(z2, -1).doit())
  236. def test_matrixelement_diff():
  237. dexpr = diff((D*w)[k,0], w[p,0])
  238. assert w[k, p].diff(w[k, p]) == 1
  239. assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
  240. _i_1 = Dummy("_i_1")
  241. assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
  242. assert dexpr.doit() == D[k, p]
  243. def test_MatrixElement_with_values():
  244. x, y, z, w = symbols("x y z w")
  245. M = Matrix([[x, y], [z, w]])
  246. i, j = symbols("i, j")
  247. Mij = M[i, j]
  248. assert isinstance(Mij, MatrixElement)
  249. Ms = SparseMatrix([[2, 3], [4, 5]])
  250. msij = Ms[i, j]
  251. assert isinstance(msij, MatrixElement)
  252. for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
  253. assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
  254. assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
  255. A = MatrixSymbol("A", 2, 2)
  256. assert A[0, 0].subs(A, M) == x
  257. assert A[i, j].subs(A, M) == M[i, j]
  258. assert M[i, j].subs(M, A) == A[i, j]
  259. assert isinstance(M[3*i - 2, j], MatrixElement)
  260. assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
  261. assert isinstance(M[i, 0], MatrixElement)
  262. assert M[i, 0].subs(i, 0) == M[0, 0]
  263. assert M[0, i].subs(i, 1) == M[0, 1]
  264. assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
  265. raises(ValueError, lambda: M[i, 2])
  266. raises(ValueError, lambda: M[i, -1])
  267. raises(ValueError, lambda: M[2, i])
  268. raises(ValueError, lambda: M[-1, i])
  269. def test_inv():
  270. B = MatrixSymbol('B', 3, 3)
  271. assert B.inv() == B**-1
  272. # https://github.com/sympy/sympy/issues/19162
  273. X = MatrixSymbol('X', 1, 1).as_explicit()
  274. assert X.inv() == Matrix([[1/X[0, 0]]])
  275. X = MatrixSymbol('X', 2, 2).as_explicit()
  276. detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
  277. invX = Matrix([[ X[1, 1], -X[0, 1]],
  278. [-X[1, 0], X[0, 0]]]) / detX
  279. assert X.inv() == invX
  280. @XFAIL
  281. def test_factor_expand():
  282. A = MatrixSymbol("A", n, n)
  283. B = MatrixSymbol("B", n, n)
  284. expr1 = (A + B)*(C + D)
  285. expr2 = A*C + B*C + A*D + B*D
  286. assert expr1 != expr2
  287. assert expand(expr1) == expr2
  288. assert factor(expr2) == expr1
  289. expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
  290. I = Identity(n)
  291. # Ideally we get the first, but we at least don't want a wrong answer
  292. assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
  293. def test_issue_2749():
  294. A = MatrixSymbol("A", 5, 2)
  295. assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
  296. [(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
  297. def test_issue_2750():
  298. x = MatrixSymbol('x', 1, 1)
  299. assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
  300. def test_issue_7842():
  301. A = MatrixSymbol('A', 3, 1)
  302. B = MatrixSymbol('B', 2, 1)
  303. assert Eq(A, B) == False
  304. assert Eq(A[1,0], B[1, 0]).func is Eq
  305. A = ZeroMatrix(2, 3)
  306. B = ZeroMatrix(2, 3)
  307. assert Eq(A, B) == True
  308. def test_issue_21195():
  309. t = symbols('t')
  310. x = Function('x')(t)
  311. dx = x.diff(t)
  312. exp1 = cos(x) + cos(x)*dx
  313. exp2 = sin(x) + tan(x)*(dx.diff(t))
  314. exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
  315. A = Matrix([[exp1], [exp2], [exp3]])
  316. B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
  317. assert A.diff(x) == B
  318. def test_MatMul_postprocessor():
  319. z = zeros(2)
  320. z1 = ZeroMatrix(2, 2)
  321. assert Mul(0, z) == Mul(z, 0) in [z, z1]
  322. M = Matrix([[1, 2], [3, 4]])
  323. Mx = Matrix([[x, 2*x], [3*x, 4*x]])
  324. assert Mul(x, M) == Mul(M, x) == Mx
  325. A = MatrixSymbol("A", 2, 2)
  326. assert Mul(A, M) == MatMul(A, M)
  327. assert Mul(M, A) == MatMul(M, A)
  328. # Scalars should be absorbed into constant matrices
  329. a = Mul(x, M, A)
  330. b = Mul(M, x, A)
  331. c = Mul(M, A, x)
  332. assert a == b == c == MatMul(Mx, A)
  333. a = Mul(x, A, M)
  334. b = Mul(A, x, M)
  335. c = Mul(A, M, x)
  336. assert a == b == c == MatMul(A, Mx)
  337. assert Mul(M, M) == M**2
  338. assert Mul(A, M, M) == MatMul(A, M**2)
  339. assert Mul(M, M, A) == MatMul(M**2, A)
  340. assert Mul(M, A, M) == MatMul(M, A, M)
  341. assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
  342. @XFAIL
  343. def test_MatAdd_postprocessor_xfail():
  344. # This is difficult to get working because of the way that Add processes
  345. # its args.
  346. z = zeros(2)
  347. assert Add(z, S.NaN) == Add(S.NaN, z)
  348. def test_MatAdd_postprocessor():
  349. # Some of these are nonsensical, but we do not raise errors for Add
  350. # because that breaks algorithms that want to replace matrices with dummy
  351. # symbols.
  352. z = zeros(2)
  353. assert Add(0, z) == Add(z, 0) == z
  354. a = Add(S.Infinity, z)
  355. assert a == Add(z, S.Infinity)
  356. assert isinstance(a, Add)
  357. assert a.args == (S.Infinity, z)
  358. a = Add(S.ComplexInfinity, z)
  359. assert a == Add(z, S.ComplexInfinity)
  360. assert isinstance(a, Add)
  361. assert a.args == (S.ComplexInfinity, z)
  362. a = Add(z, S.NaN)
  363. # assert a == Add(S.NaN, z) # See the XFAIL above
  364. assert isinstance(a, Add)
  365. assert a.args == (S.NaN, z)
  366. M = Matrix([[1, 2], [3, 4]])
  367. a = Add(x, M)
  368. assert a == Add(M, x)
  369. assert isinstance(a, Add)
  370. assert a.args == (x, M)
  371. A = MatrixSymbol("A", 2, 2)
  372. assert Add(A, M) == Add(M, A) == A + M
  373. # Scalars should be absorbed into constant matrices (producing an error)
  374. a = Add(x, M, A)
  375. assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
  376. assert isinstance(a, Add)
  377. assert a.args == (x, A + M)
  378. assert Add(M, M) == 2*M
  379. assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
  380. a = Add(A, x, M, M, x)
  381. assert isinstance(a, Add)
  382. assert a.args == (2*x, A + 2*M)
  383. def test_simplify_matrix_expressions():
  384. # Various simplification functions
  385. assert type(gcd_terms(C*D + D*C)) == MatAdd
  386. a = gcd_terms(2*C*D + 4*D*C)
  387. assert type(a) == MatAdd
  388. assert a.args == (2*C*D, 4*D*C)
  389. def test_exp():
  390. A = MatrixSymbol('A', 2, 2)
  391. B = MatrixSymbol('B', 2, 2)
  392. expr1 = exp(A)*exp(B)
  393. expr2 = exp(B)*exp(A)
  394. assert expr1 != expr2
  395. assert expr1 - expr2 != 0
  396. assert not isinstance(expr1, exp)
  397. assert not isinstance(expr2, exp)
  398. def test_invalid_args():
  399. raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
  400. def test_matrixsymbol_from_symbol():
  401. # The label should be preserved during doit and subs
  402. A_label = Symbol('A', complex=True)
  403. A = MatrixSymbol(A_label, 2, 2)
  404. A_1 = A.doit()
  405. A_2 = A.subs(2, 3)
  406. assert A_1.args == A.args
  407. assert A_2.args[0] == A.args[0]
  408. def test_as_explicit():
  409. Z = MatrixSymbol('Z', 2, 3)
  410. assert Z.as_explicit() == ImmutableMatrix([
  411. [Z[0, 0], Z[0, 1], Z[0, 2]],
  412. [Z[1, 0], Z[1, 1], Z[1, 2]],
  413. ])
  414. raises(ValueError, lambda: A.as_explicit())
  415. def test_MatrixSet():
  416. M = MatrixSet(2, 2, set=S.Reals)
  417. assert M.shape == (2, 2)
  418. assert M.set == S.Reals
  419. X = Matrix([[1, 2], [3, 4]])
  420. assert X in M
  421. X = ZeroMatrix(2, 2)
  422. assert X in M
  423. raises(TypeError, lambda: A in M)
  424. raises(TypeError, lambda: 1 in M)
  425. M = MatrixSet(n, m, set=S.Reals)
  426. assert A in M
  427. raises(TypeError, lambda: C in M)
  428. raises(TypeError, lambda: X in M)
  429. M = MatrixSet(2, 2, set={1, 2, 3})
  430. X = Matrix([[1, 2], [3, 4]])
  431. Y = Matrix([[1, 2]])
  432. assert (X in M) == S.false
  433. assert (Y in M) == S.false
  434. raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
  435. raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
  436. raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
  437. def test_matrixsymbol_solving():
  438. A = MatrixSymbol('A', 2, 2)
  439. B = MatrixSymbol('B', 2, 2)
  440. Z = ZeroMatrix(2, 2)
  441. assert -(-A + B) - A + B == Z
  442. assert (-(-A + B) - A + B).simplify() == Z
  443. assert (-(-A + B) - A + B).expand() == Z
  444. assert (-(-A + B) - A + B - Z).simplify() == Z
  445. assert (-(-A + B) - A + B - Z).expand() == Z
  446. assert (A*(A + B) + B*(A.T + B.T)).expand() == A**2 + A*B + B*A.T + B*B.T