123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- from sympy.core.mod import Mod
- from sympy.core.numbers import I
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.integers import floor
- from sympy.matrices.dense import (Matrix, eye)
- from sympy.matrices import MatrixSymbol, Identity
- from sympy.matrices.expressions import det, trace
- from sympy.matrices.expressions.kronecker import (KroneckerProduct,
- kronecker_product,
- combine_kronecker)
- mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
- mat2 = Matrix([[2 * I, 3], [4 * I, 2]])
- i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
- Z = MatrixSymbol('Z', n, n)
- W = MatrixSymbol('W', m, m)
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', n, m)
- C = MatrixSymbol('C', m, k)
- def test_KroneckerProduct():
- assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
- assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
- assert KroneckerProduct(A, C).shape == (n*m, m*k)
- assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
- assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity
- def test_KroneckerProduct_identity():
- assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
- assert KroneckerProduct(eye(2), eye(3)) == eye(6)
- def test_KroneckerProduct_explicit():
- X = MatrixSymbol('X', 2, 2)
- Y = MatrixSymbol('Y', 2, 2)
- kp = KroneckerProduct(X, Y)
- assert kp.shape == (4, 4)
- assert kp.as_explicit() == Matrix(
- [
- [X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
- [X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
- [X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
- [X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
- ]
- )
- def test_tensor_product_adjoint():
- assert KroneckerProduct(I*A, B).adjoint() == \
- -I*KroneckerProduct(A.adjoint(), B.adjoint())
- assert KroneckerProduct(mat1, mat2).adjoint() == \
- kronecker_product(mat1.adjoint(), mat2.adjoint())
- def test_tensor_product_conjugate():
- assert KroneckerProduct(I*A, B).conjugate() == \
- -I*KroneckerProduct(A.conjugate(), B.conjugate())
- assert KroneckerProduct(mat1, mat2).conjugate() == \
- kronecker_product(mat1.conjugate(), mat2.conjugate())
- def test_tensor_product_transpose():
- assert KroneckerProduct(I*A, B).transpose() == \
- I*KroneckerProduct(A.transpose(), B.transpose())
- assert KroneckerProduct(mat1, mat2).transpose() == \
- kronecker_product(mat1.transpose(), mat2.transpose())
- def test_KroneckerProduct_is_associative():
- assert kronecker_product(A, kronecker_product(
- B, C)) == kronecker_product(kronecker_product(A, B), C)
- assert kronecker_product(A, kronecker_product(
- B, C)) == KroneckerProduct(A, B, C)
- def test_KroneckerProduct_is_bilinear():
- assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
- assert kronecker_product(A, x*B) == x*kronecker_product(A, B)
- def test_KroneckerProduct_determinant():
- kp = kronecker_product(W, Z)
- assert det(kp) == det(W)**n * det(Z)**m
- def test_KroneckerProduct_trace():
- kp = kronecker_product(W, Z)
- assert trace(kp) == trace(W)*trace(Z)
- def test_KroneckerProduct_isnt_commutative():
- assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
- assert KroneckerProduct(A, B).is_commutative is False
- def test_KroneckerProduct_extracts_commutative_part():
- assert kronecker_product(x * A, 2 * B) == x * \
- 2 * KroneckerProduct(A, B)
- def test_KroneckerProduct_inverse():
- kp = kronecker_product(W, Z)
- assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())
- def test_KroneckerProduct_combine_add():
- kp1 = kronecker_product(A, B)
- kp2 = kronecker_product(C, W)
- assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)
- def test_KroneckerProduct_combine_mul():
- X = MatrixSymbol('X', m, n)
- Y = MatrixSymbol('Y', m, n)
- kp1 = kronecker_product(A, X)
- kp2 = kronecker_product(B, Y)
- assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)
- def test_KroneckerProduct_combine_pow():
- X = MatrixSymbol('X', n, n)
- Y = MatrixSymbol('Y', n, n)
- assert combine_kronecker(KroneckerProduct(
- X, Y)**x) == KroneckerProduct(X**x, Y**x)
- assert combine_kronecker(x * KroneckerProduct(X, Y)
- ** 2) == x * KroneckerProduct(X**2, Y**2)
- assert combine_kronecker(
- x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
- # cannot simplify because of non-square arguments to kronecker product:
- assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m
- def test_KroneckerProduct_expand():
- X = MatrixSymbol('X', n, n)
- Y = MatrixSymbol('Y', n, n)
- assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
- KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
- KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)
- def test_KroneckerProduct_entry():
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', o, p)
- assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]
|