test_kronecker.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. from sympy.core.mod import Mod
  2. from sympy.core.numbers import I
  3. from sympy.core.symbol import symbols
  4. from sympy.functions.elementary.integers import floor
  5. from sympy.matrices.dense import (Matrix, eye)
  6. from sympy.matrices import MatrixSymbol, Identity
  7. from sympy.matrices.expressions import det, trace
  8. from sympy.matrices.expressions.kronecker import (KroneckerProduct,
  9. kronecker_product,
  10. combine_kronecker)
  11. mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
  12. mat2 = Matrix([[2 * I, 3], [4 * I, 2]])
  13. i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
  14. Z = MatrixSymbol('Z', n, n)
  15. W = MatrixSymbol('W', m, m)
  16. A = MatrixSymbol('A', n, m)
  17. B = MatrixSymbol('B', n, m)
  18. C = MatrixSymbol('C', m, k)
  19. def test_KroneckerProduct():
  20. assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
  21. assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
  22. assert KroneckerProduct(A, C).shape == (n*m, m*k)
  23. assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
  24. assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity
  25. def test_KroneckerProduct_identity():
  26. assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
  27. assert KroneckerProduct(eye(2), eye(3)) == eye(6)
  28. def test_KroneckerProduct_explicit():
  29. X = MatrixSymbol('X', 2, 2)
  30. Y = MatrixSymbol('Y', 2, 2)
  31. kp = KroneckerProduct(X, Y)
  32. assert kp.shape == (4, 4)
  33. assert kp.as_explicit() == Matrix(
  34. [
  35. [X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
  36. [X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
  37. [X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
  38. [X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
  39. ]
  40. )
  41. def test_tensor_product_adjoint():
  42. assert KroneckerProduct(I*A, B).adjoint() == \
  43. -I*KroneckerProduct(A.adjoint(), B.adjoint())
  44. assert KroneckerProduct(mat1, mat2).adjoint() == \
  45. kronecker_product(mat1.adjoint(), mat2.adjoint())
  46. def test_tensor_product_conjugate():
  47. assert KroneckerProduct(I*A, B).conjugate() == \
  48. -I*KroneckerProduct(A.conjugate(), B.conjugate())
  49. assert KroneckerProduct(mat1, mat2).conjugate() == \
  50. kronecker_product(mat1.conjugate(), mat2.conjugate())
  51. def test_tensor_product_transpose():
  52. assert KroneckerProduct(I*A, B).transpose() == \
  53. I*KroneckerProduct(A.transpose(), B.transpose())
  54. assert KroneckerProduct(mat1, mat2).transpose() == \
  55. kronecker_product(mat1.transpose(), mat2.transpose())
  56. def test_KroneckerProduct_is_associative():
  57. assert kronecker_product(A, kronecker_product(
  58. B, C)) == kronecker_product(kronecker_product(A, B), C)
  59. assert kronecker_product(A, kronecker_product(
  60. B, C)) == KroneckerProduct(A, B, C)
  61. def test_KroneckerProduct_is_bilinear():
  62. assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
  63. assert kronecker_product(A, x*B) == x*kronecker_product(A, B)
  64. def test_KroneckerProduct_determinant():
  65. kp = kronecker_product(W, Z)
  66. assert det(kp) == det(W)**n * det(Z)**m
  67. def test_KroneckerProduct_trace():
  68. kp = kronecker_product(W, Z)
  69. assert trace(kp) == trace(W)*trace(Z)
  70. def test_KroneckerProduct_isnt_commutative():
  71. assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
  72. assert KroneckerProduct(A, B).is_commutative is False
  73. def test_KroneckerProduct_extracts_commutative_part():
  74. assert kronecker_product(x * A, 2 * B) == x * \
  75. 2 * KroneckerProduct(A, B)
  76. def test_KroneckerProduct_inverse():
  77. kp = kronecker_product(W, Z)
  78. assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())
  79. def test_KroneckerProduct_combine_add():
  80. kp1 = kronecker_product(A, B)
  81. kp2 = kronecker_product(C, W)
  82. assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)
  83. def test_KroneckerProduct_combine_mul():
  84. X = MatrixSymbol('X', m, n)
  85. Y = MatrixSymbol('Y', m, n)
  86. kp1 = kronecker_product(A, X)
  87. kp2 = kronecker_product(B, Y)
  88. assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)
  89. def test_KroneckerProduct_combine_pow():
  90. X = MatrixSymbol('X', n, n)
  91. Y = MatrixSymbol('Y', n, n)
  92. assert combine_kronecker(KroneckerProduct(
  93. X, Y)**x) == KroneckerProduct(X**x, Y**x)
  94. assert combine_kronecker(x * KroneckerProduct(X, Y)
  95. ** 2) == x * KroneckerProduct(X**2, Y**2)
  96. assert combine_kronecker(
  97. x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
  98. # cannot simplify because of non-square arguments to kronecker product:
  99. assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m
  100. def test_KroneckerProduct_expand():
  101. X = MatrixSymbol('X', n, n)
  102. Y = MatrixSymbol('Y', n, n)
  103. assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
  104. KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
  105. KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)
  106. def test_KroneckerProduct_entry():
  107. A = MatrixSymbol('A', n, m)
  108. B = MatrixSymbol('B', o, p)
  109. assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]