1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- from sympy.core import symbols, S
- from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix
- from sympy.matrices.common import NonInvertibleMatrixError, NonSquareMatrixError
- from sympy.matrices import eye, Identity
- from sympy.testing.pytest import raises
- from sympy.assumptions.ask import Q
- from sympy.assumptions.refine import refine
- n, m, l = symbols('n m l', integer=True)
- A = MatrixSymbol('A', n, m)
- B = MatrixSymbol('B', m, l)
- C = MatrixSymbol('C', n, n)
- D = MatrixSymbol('D', n, n)
- E = MatrixSymbol('E', m, n)
- def test_inverse():
- assert Inverse(C).args == (C, S.NegativeOne)
- assert Inverse(C).shape == (n, n)
- assert Inverse(A*E).shape == (n, n)
- assert Inverse(E*A).shape == (m, m)
- assert Inverse(C).inverse() == C
- assert Inverse(Inverse(C)).doit() == C
- assert isinstance(Inverse(Inverse(C)), Inverse)
- assert Inverse(*Inverse(E*A).args) == Inverse(E*A)
- assert C.inverse().inverse() == C
- assert C.inverse()*C == Identity(C.rows)
- assert Identity(n).inverse() == Identity(n)
- assert (3*Identity(n)).inverse() == Identity(n)/3
- # Simplifies Muls if possible (i.e. submatrices are square)
- assert (C*D).inverse() == D.I*C.I
- # But still works when not possible
- assert isinstance((A*E).inverse(), Inverse)
- assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D)
- assert Inverse(eye(3)).doit() == eye(3)
- assert Inverse(eye(3)).doit(deep=False) == eye(3)
- assert OneMatrix(1, 1).I == Identity(1)
- assert isinstance(OneMatrix(n, n).I, Inverse)
- def test_inverse_non_invertible():
- raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I)
- raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I)
- def test_refine():
- assert refine(C.I, Q.orthogonal(C)) == C.T
- def test_inverse_matpow_canonicalization():
- A = MatrixSymbol('A', 3, 3)
- assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit()
- def test_nonsquare_error():
- A = MatrixSymbol('A', 3, 4)
- raises(NonSquareMatrixError, lambda: Inverse(A))
|