test_holonomic.py 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. from sympy.holonomic import (DifferentialOperator, HolonomicFunction,
  2. DifferentialOperators, from_hyper,
  3. from_meijerg, expr_to_holonomic)
  4. from sympy.holonomic.recurrence import RecurrenceOperators, HolonomicSequence
  5. from sympy.core import EulerGamma
  6. from sympy.core.numbers import (I, Rational, pi)
  7. from sympy.core.singleton import S
  8. from sympy.core.symbol import (Symbol, symbols)
  9. from sympy.functions.elementary.exponential import (exp, log)
  10. from sympy.functions.elementary.hyperbolic import (asinh, cosh)
  11. from sympy.functions.elementary.miscellaneous import sqrt
  12. from sympy.functions.elementary.trigonometric import (cos, sin)
  13. from sympy.functions.special.bessel import besselj
  14. from sympy.functions.special.beta_functions import beta
  15. from sympy.functions.special.error_functions import (Ci, Si, erf, erfc)
  16. from sympy.functions.special.gamma_functions import gamma
  17. from sympy.functions.special.hyper import (hyper, meijerg)
  18. from sympy.printing.str import sstr
  19. from sympy.series.order import O
  20. from sympy.simplify.hyperexpand import hyperexpand
  21. from sympy.polys.domains.integerring import ZZ
  22. from sympy.polys.domains.rationalfield import QQ
  23. from sympy.polys.domains.realfield import RR
  24. def test_DifferentialOperator():
  25. x = symbols('x')
  26. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  27. assert Dx == R.derivative_operator
  28. assert Dx == DifferentialOperator([R.base.zero, R.base.one], R)
  29. assert x * Dx + x**2 * Dx**2 == DifferentialOperator([0, x, x**2], R)
  30. assert (x**2 + 1) + Dx + x * \
  31. Dx**5 == DifferentialOperator([x**2 + 1, 1, 0, 0, 0, x], R)
  32. assert (x * Dx + x**2 + 1 - Dx * (x**3 + x))**3 == (-48 * x**6) + \
  33. (-57 * x**7) * Dx + (-15 * x**8) * Dx**2 + (-x**9) * Dx**3
  34. p = (x * Dx**2 + (x**2 + 3) * Dx**5) * (Dx + x**2)
  35. q = (2 * x) + (4 * x**2) * Dx + (x**3) * Dx**2 + \
  36. (20 * x**2 + x + 60) * Dx**3 + (10 * x**3 + 30 * x) * Dx**4 + \
  37. (x**4 + 3 * x**2) * Dx**5 + (x**2 + 3) * Dx**6
  38. assert p == q
  39. def test_HolonomicFunction_addition():
  40. x = symbols('x')
  41. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  42. p = HolonomicFunction(Dx**2 * x, x)
  43. q = HolonomicFunction((2) * Dx + (x) * Dx**2, x)
  44. assert p == q
  45. p = HolonomicFunction(x * Dx + 1, x)
  46. q = HolonomicFunction(Dx + 1, x)
  47. r = HolonomicFunction((x - 2) + (x**2 - 2) * Dx + (x**2 - x) * Dx**2, x)
  48. assert p + q == r
  49. p = HolonomicFunction(x * Dx + Dx**2 * (x**2 + 2), x)
  50. q = HolonomicFunction(Dx - 3, x)
  51. r = HolonomicFunction((-54 * x**2 - 126 * x - 150) + (-135 * x**3 - 252 * x**2 - 270 * x + 140) * Dx +\
  52. (-27 * x**4 - 24 * x**2 + 14 * x - 150) * Dx**2 + \
  53. (9 * x**4 + 15 * x**3 + 38 * x**2 + 30 * x +40) * Dx**3, x)
  54. assert p + q == r
  55. p = HolonomicFunction(Dx**5 - 1, x)
  56. q = HolonomicFunction(x**3 + Dx, x)
  57. r = HolonomicFunction((-x**18 + 45*x**14 - 525*x**10 + 1575*x**6 - x**3 - 630*x**2) + \
  58. (-x**15 + 30*x**11 - 195*x**7 + 210*x**3 - 1)*Dx + (x**18 - 45*x**14 + 525*x**10 - \
  59. 1575*x**6 + x**3 + 630*x**2)*Dx**5 + (x**15 - 30*x**11 + 195*x**7 - 210*x**3 + \
  60. 1)*Dx**6, x)
  61. assert p+q == r
  62. p = x**2 + 3*x + 8
  63. q = x**3 - 7*x + 5
  64. p = p*Dx - p.diff()
  65. q = q*Dx - q.diff()
  66. r = HolonomicFunction(p, x) + HolonomicFunction(q, x)
  67. s = HolonomicFunction((6*x**2 + 18*x + 14) + (-4*x**3 - 18*x**2 - 62*x + 10)*Dx +\
  68. (x**4 + 6*x**3 + 31*x**2 - 10*x - 71)*Dx**2, x)
  69. assert r == s
  70. def test_HolonomicFunction_multiplication():
  71. x = symbols('x')
  72. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  73. p = HolonomicFunction(Dx+x+x*Dx**2, x)
  74. q = HolonomicFunction(x*Dx+Dx*x+Dx**2, x)
  75. r = HolonomicFunction((8*x**6 + 4*x**4 + 6*x**2 + 3) + (24*x**5 - 4*x**3 + 24*x)*Dx + \
  76. (8*x**6 + 20*x**4 + 12*x**2 + 2)*Dx**2 + (8*x**5 + 4*x**3 + 4*x)*Dx**3 + \
  77. (2*x**4 + x**2)*Dx**4, x)
  78. assert p*q == r
  79. p = HolonomicFunction(Dx**2+1, x)
  80. q = HolonomicFunction(Dx-1, x)
  81. r = HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x)
  82. assert p*q == r
  83. p = HolonomicFunction(Dx**2+1+x+Dx, x)
  84. q = HolonomicFunction((Dx*x-1)**2, x)
  85. r = HolonomicFunction((4*x**7 + 11*x**6 + 16*x**5 + 4*x**4 - 6*x**3 - 7*x**2 - 8*x - 2) + \
  86. (8*x**6 + 26*x**5 + 24*x**4 - 3*x**3 - 11*x**2 - 6*x - 2)*Dx + \
  87. (8*x**6 + 18*x**5 + 15*x**4 - 3*x**3 - 6*x**2 - 6*x - 2)*Dx**2 + (8*x**5 + \
  88. 10*x**4 + 6*x**3 - 2*x**2 - 4*x)*Dx**3 + (4*x**5 + 3*x**4 - x**2)*Dx**4, x)
  89. assert p*q == r
  90. p = HolonomicFunction(x*Dx**2-1, x)
  91. q = HolonomicFunction(Dx*x-x, x)
  92. r = HolonomicFunction((x - 3) + (-2*x + 2)*Dx + (x)*Dx**2, x)
  93. assert p*q == r
  94. def test_addition_initial_condition():
  95. x = symbols('x')
  96. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  97. p = HolonomicFunction(Dx-1, x, 0, [3])
  98. q = HolonomicFunction(Dx**2+1, x, 0, [1, 0])
  99. r = HolonomicFunction(-1 + Dx - Dx**2 + Dx**3, x, 0, [4, 3, 2])
  100. assert p + q == r
  101. p = HolonomicFunction(Dx - x + Dx**2, x, 0, [1, 2])
  102. q = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
  103. r = HolonomicFunction((-x**4 - x**3/4 - x**2 + Rational(1, 4)) + (x**3 + x**2/4 + x*Rational(3, 4) + 1)*Dx + \
  104. (x*Rational(-3, 2) + Rational(7, 4))*Dx**2 + (x**2 - x*Rational(7, 4) + Rational(1, 4))*Dx**3 + (x**2 + x/4 + S.Half)*Dx**4, x, 0, [2, 2, -2, 2])
  105. assert p + q == r
  106. p = HolonomicFunction(Dx**2 + 4*x*Dx + x**2, x, 0, [3, 4])
  107. q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
  108. r = HolonomicFunction((x**6 + 2*x**4 - 5*x**2 - 6) + (4*x**5 + 36*x**3 - 32*x)*Dx + \
  109. (x**6 + 3*x**4 + 5*x**2 - 9)*Dx**2 + (4*x**5 + 36*x**3 - 32*x)*Dx**3 + (x**4 + \
  110. 10*x**2 - 3)*Dx**4, x, 0, [4, 5, -1, -17])
  111. assert p + q == r
  112. q = HolonomicFunction(Dx**3 + x, x, 2, [3, 0, 1])
  113. p = HolonomicFunction(Dx - 1, x, 2, [1])
  114. r = HolonomicFunction((-x**2 - x + 1) + (x**2 + x)*Dx + (-x - 2)*Dx**3 + \
  115. (x + 1)*Dx**4, x, 2, [4, 1, 2, -5 ])
  116. assert p + q == r
  117. p = expr_to_holonomic(sin(x))
  118. q = expr_to_holonomic(1/x, x0=1)
  119. r = HolonomicFunction((x**2 + 6) + (x**3 + 2*x)*Dx + (x**2 + 6)*Dx**2 + (x**3 + 2*x)*Dx**3, \
  120. x, 1, [sin(1) + 1, -1 + cos(1), -sin(1) + 2])
  121. assert p + q == r
  122. C_1 = symbols('C_1')
  123. p = expr_to_holonomic(sqrt(x))
  124. q = expr_to_holonomic(sqrt(x**2-x))
  125. r = (p + q).to_expr().subs(C_1, -I/2).expand()
  126. assert r == I*sqrt(x)*sqrt(-x + 1) + sqrt(x)
  127. def test_multiplication_initial_condition():
  128. x = symbols('x')
  129. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  130. p = HolonomicFunction(Dx**2 + x*Dx - 1, x, 0, [3, 1])
  131. q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
  132. r = HolonomicFunction((x**4 + 14*x**2 + 60) + 4*x*Dx + (x**4 + 9*x**2 + 20)*Dx**2 + \
  133. (2*x**3 + 18*x)*Dx**3 + (x**2 + 10)*Dx**4, x, 0, [3, 4, 2, 3])
  134. assert p * q == r
  135. p = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
  136. q = HolonomicFunction(Dx**3 - x**2, x, 0, [3, 3, 3])
  137. r = HolonomicFunction((x**8 - 37*x**7/27 - 10*x**6/27 - 164*x**5/9 - 184*x**4/9 + \
  138. 160*x**3/27 + 404*x**2/9 + 8*x + Rational(40, 3)) + (6*x**7 - 128*x**6/9 - 98*x**5/9 - 28*x**4/9 + \
  139. 8*x**3/9 + 28*x**2 + x*Rational(40, 9) - 40)*Dx + (3*x**6 - 82*x**5/9 + 76*x**4/9 + 4*x**3/3 + \
  140. 220*x**2/9 - x*Rational(80, 3))*Dx**2 + (-2*x**6 + 128*x**5/27 - 2*x**4/3 -80*x**2/9 + Rational(200, 9))*Dx**3 + \
  141. (3*x**5 - 64*x**4/9 - 28*x**3/9 + 6*x**2 - x*Rational(20, 9) - Rational(20, 3))*Dx**4 + (-4*x**3 + 64*x**2/9 + \
  142. x*Rational(8, 3))*Dx**5 + (x**4 - 64*x**3/27 - 4*x**2/3 + Rational(20, 9))*Dx**6, x, 0, [3, 3, 3, -3, -12, -24])
  143. assert p * q == r
  144. p = HolonomicFunction(Dx - 1, x, 0, [2])
  145. q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
  146. r = HolonomicFunction(2 -2*Dx + Dx**2, x, 0, [0, 2])
  147. assert p * q == r
  148. q = HolonomicFunction(x*Dx**2 + 1 + 2*Dx, x, 0,[0, 1])
  149. r = HolonomicFunction((x - 1) + (-2*x + 2)*Dx + x*Dx**2, x, 0, [0, 2])
  150. assert p * q == r
  151. p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 3])
  152. q = HolonomicFunction(Dx**3 + 1, x, 0, [1, 2, 1])
  153. r = HolonomicFunction(6*Dx + 3*Dx**2 + 2*Dx**3 - 3*Dx**4 + Dx**6, x, 0, [1, 5, 14, 17, 17, 2])
  154. assert p * q == r
  155. p = expr_to_holonomic(sin(x))
  156. q = expr_to_holonomic(1/x, x0=1)
  157. r = HolonomicFunction(x + 2*Dx + x*Dx**2, x, 1, [sin(1), -sin(1) + cos(1)])
  158. assert p * q == r
  159. p = expr_to_holonomic(sqrt(x))
  160. q = expr_to_holonomic(sqrt(x**2-x))
  161. r = (p * q).to_expr()
  162. assert r == I*x*sqrt(-x + 1)
  163. def test_HolonomicFunction_composition():
  164. x = symbols('x')
  165. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  166. p = HolonomicFunction(Dx-1, x).composition(x**2+x)
  167. r = HolonomicFunction((-2*x - 1) + Dx, x)
  168. assert p == r
  169. p = HolonomicFunction(Dx**2+1, x).composition(x**5+x**2+1)
  170. r = HolonomicFunction((125*x**12 + 150*x**9 + 60*x**6 + 8*x**3) + (-20*x**3 - 2)*Dx + \
  171. (5*x**4 + 2*x)*Dx**2, x)
  172. assert p == r
  173. p = HolonomicFunction(Dx**2*x+x, x).composition(2*x**3+x**2+1)
  174. r = HolonomicFunction((216*x**9 + 324*x**8 + 180*x**7 + 152*x**6 + 112*x**5 + \
  175. 36*x**4 + 4*x**3) + (24*x**4 + 16*x**3 + 3*x**2 - 6*x - 1)*Dx + (6*x**5 + 5*x**4 + \
  176. x**3 + 3*x**2 + x)*Dx**2, x)
  177. assert p == r
  178. p = HolonomicFunction(Dx**2+1, x).composition(1-x**2)
  179. r = HolonomicFunction((4*x**3) - Dx + x*Dx**2, x)
  180. assert p == r
  181. p = HolonomicFunction(Dx**2+1, x).composition(x - 2/(x**2 + 1))
  182. r = HolonomicFunction((x**12 + 6*x**10 + 12*x**9 + 15*x**8 + 48*x**7 + 68*x**6 + \
  183. 72*x**5 + 111*x**4 + 112*x**3 + 54*x**2 + 12*x + 1) + (12*x**8 + 32*x**6 + \
  184. 24*x**4 - 4)*Dx + (x**12 + 6*x**10 + 4*x**9 + 15*x**8 + 16*x**7 + 20*x**6 + 24*x**5+ \
  185. 15*x**4 + 16*x**3 + 6*x**2 + 4*x + 1)*Dx**2, x)
  186. assert p == r
  187. def test_from_hyper():
  188. x = symbols('x')
  189. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  190. p = hyper([1, 1], [Rational(3, 2)], x**2/4)
  191. q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + Rational(4, 3)])
  192. r = from_hyper(p)
  193. assert r == q
  194. p = from_hyper(hyper([1], [Rational(3, 2)], x**2/4))
  195. q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x)
  196. # x0 = 1
  197. y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
  198. assert sstr(p.y0) == y0
  199. assert q.annihilator == p.annihilator
  200. def test_from_meijerg():
  201. x = symbols('x')
  202. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  203. p = from_meijerg(meijerg(([], [Rational(3, 2)]), ([S.Half], [S.Half, 1]), x))
  204. q = HolonomicFunction(x/2 - Rational(1, 4) + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \
  205. [1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))])
  206. assert p == q
  207. p = from_meijerg(meijerg(([], []), ([0], []), x))
  208. q = HolonomicFunction(1 + Dx, x, 0, [1])
  209. assert p == q
  210. p = from_meijerg(meijerg(([1], []), ([S.Half], [0]), x))
  211. q = HolonomicFunction((x + S.Half)*Dx + x*Dx**2, x, 1, [sqrt(pi)*erf(1), exp(-1)])
  212. assert p == q
  213. p = from_meijerg(meijerg(([0], [1]), ([0], []), 2*x**2))
  214. q = HolonomicFunction((3*x**2 - 1)*Dx + x**3*Dx**2, x, 1, [-exp(Rational(-1, 2)) + 1, -exp(Rational(-1, 2))])
  215. assert p == q
  216. def test_to_Sequence():
  217. x = symbols('x')
  218. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  219. n = symbols('n', integer=True)
  220. _, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
  221. p = HolonomicFunction(x**2*Dx**4 + x + Dx, x).to_sequence()
  222. q = [(HolonomicSequence(1 + (n + 2)*Sn**2 + (n**4 + 6*n**3 + 11*n**2 + 6*n)*Sn**3), 0, 1)]
  223. assert p == q
  224. p = HolonomicFunction(x**2*Dx**4 + x**3 + Dx**2, x).to_sequence()
  225. q = [(HolonomicSequence(1 + (n**4 + 14*n**3 + 72*n**2 + 163*n + 140)*Sn**5), 0, 0)]
  226. assert p == q
  227. p = HolonomicFunction(x**3*Dx**4 + 1 + Dx**2, x).to_sequence()
  228. q = [(HolonomicSequence(1 + (n**4 - 2*n**3 - n**2 + 2*n)*Sn + (n**2 + 3*n + 2)*Sn**2), 0, 0)]
  229. assert p == q
  230. p = HolonomicFunction(3*x**3*Dx**4 + 2*x*Dx + x*Dx**3, x).to_sequence()
  231. q = [(HolonomicSequence(2*n + (3*n**4 - 6*n**3 - 3*n**2 + 6*n)*Sn + (n**3 + 3*n**2 + 2*n)*Sn**2), 0, 1)]
  232. assert p == q
  233. def test_to_Sequence_Initial_Coniditons():
  234. x = symbols('x')
  235. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  236. n = symbols('n', integer=True)
  237. _, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
  238. p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
  239. q = [(HolonomicSequence(-1 + (n + 1)*Sn, 1), 0)]
  240. assert p == q
  241. p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence()
  242. q = [(HolonomicSequence(1 + (n**2 + 3*n + 2)*Sn**2, [0, 1]), 0)]
  243. assert p == q
  244. p = HolonomicFunction(Dx**2 + 1 + x**3*Dx, x, 0, [2, 3]).to_sequence()
  245. q = [(HolonomicSequence(n + Sn**2 + (n**2 + 7*n + 12)*Sn**4, [2, 3, -1, Rational(-1, 2), Rational(1, 12)]), 1)]
  246. assert p == q
  247. p = HolonomicFunction(x**3*Dx**5 + 1 + Dx, x).to_sequence()
  248. q = [(HolonomicSequence(1 + (n + 1)*Sn + (n**5 - 5*n**3 + 4*n)*Sn**2), 0, 3)]
  249. assert p == q
  250. C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
  251. p = expr_to_holonomic(log(1+x**2))
  252. q = [(HolonomicSequence(n**2 + (n**2 + 2*n)*Sn**2, [0, 0, C_2]), 0, 1)]
  253. assert p.to_sequence() == q
  254. p = p.diff()
  255. q = [(HolonomicSequence((n + 2) + (n + 2)*Sn**2, [C_0, 0]), 1, 0)]
  256. assert p.to_sequence() == q
  257. p = expr_to_holonomic(erf(x) + x).to_sequence()
  258. q = [(HolonomicSequence((2*n**2 - 2*n) + (n**3 + 2*n**2 - n - 2)*Sn**2, [0, 1 + 2/sqrt(pi), 0, C_3]), 0, 2)]
  259. assert p == q
  260. def test_series():
  261. x = symbols('x')
  262. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  263. p = HolonomicFunction(Dx**2 + 2*x*Dx, x, 0, [0, 1]).series(n=10)
  264. q = x - x**3/3 + x**5/10 - x**7/42 + x**9/216 + O(x**10)
  265. assert p == q
  266. p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
  267. q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x)
  268. r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2)
  269. s = 1 + x**2/2 + x**4/24 - 31*x**6/720 - 179*x**8/8064 + O(x**10)
  270. assert r == s
  271. t = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x)
  272. r = (p * t + q).series(n=10)
  273. s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\
  274. 71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10)
  275. assert r == s
  276. p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
  277. (4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7)
  278. q = x + x**3/6 - 3*x**4/16 + x**5/20 - 23*x**6/960 + O(x**7)
  279. assert p == q
  280. p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
  281. (4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7)
  282. q = 1 - 3*x**2/4 - x**3/4 - 5*x**4/32 - 3*x**5/40 - 17*x**6/384 + O(x**7)
  283. assert p == q
  284. p = expr_to_holonomic(erf(x) + x).series(n=10)
  285. C_3 = symbols('C_3')
  286. q = (erf(x) + x).series(n=10)
  287. assert p.subs(C_3, -2/(3*sqrt(pi))) == q
  288. assert expr_to_holonomic(sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10)
  289. assert expr_to_holonomic((2*x - 3*x**2)**Rational(1, 3)).series() == ((2*x - 3*x**2)**Rational(1, 3)).series()
  290. assert expr_to_holonomic(sqrt(x**2-x)).series() == (sqrt(x**2-x)).series()
  291. assert expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).series(n=10) == (cos(x)**2/x**2).series(n=10)
  292. assert expr_to_holonomic(cos(x)**2/x**2, x0=1).series(n=10).together() == (cos(x)**2/x**2).series(n=10, x0=1).together()
  293. assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \
  294. == (cos(x-1)**2/(x-1)**2).series(x0=1, n=10)
  295. def test_evalf_euler():
  296. x = symbols('x')
  297. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  298. # log(1+x)
  299. p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1])
  300. # path taken is a straight line from 0 to 1, on the real axis
  301. r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
  302. s = '0.699525841805253' # approx. equal to log(2) i.e. 0.693147180559945
  303. assert sstr(p.evalf(r, method='Euler')[-1]) == s
  304. # path taken is a triangle 0-->1+i-->2
  305. r = [0.1 + 0.1*I]
  306. for i in range(9):
  307. r.append(r[-1]+0.1+0.1*I)
  308. for i in range(10):
  309. r.append(r[-1]+0.1-0.1*I)
  310. # close to the exact solution 1.09861228866811
  311. # imaginary part also close to zero
  312. s = '1.07530466271334 - 0.0251200594793912*I'
  313. assert sstr(p.evalf(r, method='Euler')[-1]) == s
  314. # sin(x)
  315. p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
  316. s = '0.905546532085401 - 6.93889390390723e-18*I'
  317. assert sstr(p.evalf(r, method='Euler')[-1]) == s
  318. # computing sin(pi/2) using this method
  319. # using a linear path from 0 to pi/2
  320. r = [0.1]
  321. for i in range(14):
  322. r.append(r[-1] + 0.1)
  323. r.append(pi/2)
  324. s = '1.08016557252834' # close to 1.0 (exact solution)
  325. assert sstr(p.evalf(r, method='Euler')[-1]) == s
  326. # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
  327. # computing the same value sin(pi/2) using different path
  328. r = [0.1*I]
  329. for i in range(9):
  330. r.append(r[-1]+0.1*I)
  331. for i in range(15):
  332. r.append(r[-1]+0.1)
  333. r.append(pi/2+I)
  334. for i in range(10):
  335. r.append(r[-1]-0.1*I)
  336. # close to 1.0
  337. s = '0.976882381836257 - 1.65557671738537e-16*I'
  338. assert sstr(p.evalf(r, method='Euler')[-1]) == s
  339. # cos(x)
  340. p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
  341. # compute cos(pi) along 0-->pi
  342. r = [0.05]
  343. for i in range(61):
  344. r.append(r[-1]+0.05)
  345. r.append(pi)
  346. # close to -1 (exact answer)
  347. s = '-1.08140824719196'
  348. assert sstr(p.evalf(r, method='Euler')[-1]) == s
  349. # a rectangular path (0 -> i -> 2+i -> 2)
  350. r = [0.1*I]
  351. for i in range(9):
  352. r.append(r[-1]+0.1*I)
  353. for i in range(20):
  354. r.append(r[-1]+0.1)
  355. for i in range(10):
  356. r.append(r[-1]-0.1*I)
  357. p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r, method='Euler')
  358. s = '0.501421652861245 - 3.88578058618805e-16*I'
  359. assert sstr(p[-1]) == s
  360. def test_evalf_rk4():
  361. x = symbols('x')
  362. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  363. # log(1+x)
  364. p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1])
  365. # path taken is a straight line from 0 to 1, on the real axis
  366. r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
  367. s = '0.693146363174626' # approx. equal to log(2) i.e. 0.693147180559945
  368. assert sstr(p.evalf(r)[-1]) == s
  369. # path taken is a triangle 0-->1+i-->2
  370. r = [0.1 + 0.1*I]
  371. for i in range(9):
  372. r.append(r[-1]+0.1+0.1*I)
  373. for i in range(10):
  374. r.append(r[-1]+0.1-0.1*I)
  375. # close to the exact solution 1.09861228866811
  376. # imaginary part also close to zero
  377. s = '1.098616 + 1.36083e-7*I'
  378. assert sstr(p.evalf(r)[-1].n(7)) == s
  379. # sin(x)
  380. p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
  381. s = '0.90929463522785 + 1.52655665885959e-16*I'
  382. assert sstr(p.evalf(r)[-1]) == s
  383. # computing sin(pi/2) using this method
  384. # using a linear path from 0 to pi/2
  385. r = [0.1]
  386. for i in range(14):
  387. r.append(r[-1] + 0.1)
  388. r.append(pi/2)
  389. s = '0.999999895088917' # close to 1.0 (exact solution)
  390. assert sstr(p.evalf(r)[-1]) == s
  391. # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
  392. # computing the same value sin(pi/2) using different path
  393. r = [0.1*I]
  394. for i in range(9):
  395. r.append(r[-1]+0.1*I)
  396. for i in range(15):
  397. r.append(r[-1]+0.1)
  398. r.append(pi/2+I)
  399. for i in range(10):
  400. r.append(r[-1]-0.1*I)
  401. # close to 1.0
  402. s = '1.00000003415141 + 6.11940487991086e-16*I'
  403. assert sstr(p.evalf(r)[-1]) == s
  404. # cos(x)
  405. p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
  406. # compute cos(pi) along 0-->pi
  407. r = [0.05]
  408. for i in range(61):
  409. r.append(r[-1]+0.05)
  410. r.append(pi)
  411. # close to -1 (exact answer)
  412. s = '-0.999999993238714'
  413. assert sstr(p.evalf(r)[-1]) == s
  414. # a rectangular path (0 -> i -> 2+i -> 2)
  415. r = [0.1*I]
  416. for i in range(9):
  417. r.append(r[-1]+0.1*I)
  418. for i in range(20):
  419. r.append(r[-1]+0.1)
  420. for i in range(10):
  421. r.append(r[-1]-0.1*I)
  422. p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r)
  423. s = '0.493152791638442 - 1.41553435639707e-15*I'
  424. assert sstr(p[-1]) == s
  425. def test_expr_to_holonomic():
  426. x = symbols('x')
  427. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  428. p = expr_to_holonomic((sin(x)/x)**2)
  429. q = HolonomicFunction(8*x + (4*x**2 + 6)*Dx + 6*x*Dx**2 + x**2*Dx**3, x, 0, \
  430. [1, 0, Rational(-2, 3)])
  431. assert p == q
  432. p = expr_to_holonomic(1/(1+x**2)**2)
  433. q = HolonomicFunction(4*x + (x**2 + 1)*Dx, x, 0, [1])
  434. assert p == q
  435. p = expr_to_holonomic(exp(x)*sin(x)+x*log(1+x))
  436. q = HolonomicFunction((2*x**3 + 10*x**2 + 20*x + 18) + (-2*x**4 - 10*x**3 - 20*x**2 \
  437. - 18*x)*Dx + (2*x**5 + 6*x**4 + 7*x**3 + 8*x**2 + 10*x - 4)*Dx**2 + \
  438. (-2*x**5 - 5*x**4 - 2*x**3 + 2*x**2 - x + 4)*Dx**3 + (x**5 + 2*x**4 - x**3 - \
  439. 7*x**2/2 + x + Rational(5, 2))*Dx**4, x, 0, [0, 1, 4, -1])
  440. assert p == q
  441. p = expr_to_holonomic(x*exp(x)+cos(x)+1)
  442. q = HolonomicFunction((-x - 3)*Dx + (x + 2)*Dx**2 + (-x - 3)*Dx**3 + (x + 2)*Dx**4, x, \
  443. 0, [2, 1, 1, 3])
  444. assert p == q
  445. assert (x*exp(x)+cos(x)+1).series(n=10) == p.series(n=10)
  446. p = expr_to_holonomic(log(1 + x)**2 + 1)
  447. q = HolonomicFunction(Dx + (3*x + 3)*Dx**2 + (x**2 + 2*x + 1)*Dx**3, x, 0, [1, 0, 2])
  448. assert p == q
  449. p = expr_to_holonomic(erf(x)**2 + x)
  450. q = HolonomicFunction((8*x**4 - 2*x**2 + 2)*Dx**2 + (6*x**3 - x/2)*Dx**3 + \
  451. (x**2+ Rational(1, 4))*Dx**4, x, 0, [0, 1, 8/pi, 0])
  452. assert p == q
  453. p = expr_to_holonomic(cosh(x)*x)
  454. q = HolonomicFunction((-x**2 + 2) -2*x*Dx + x**2*Dx**2, x, 0, [0, 1])
  455. assert p == q
  456. p = expr_to_holonomic(besselj(2, x))
  457. q = HolonomicFunction((x**2 - 4) + x*Dx + x**2*Dx**2, x, 0, [0, 0])
  458. assert p == q
  459. p = expr_to_holonomic(besselj(0, x) + exp(x))
  460. q = HolonomicFunction((-x**2 - x/2 + S.Half) + (x**2 - x/2 - Rational(3, 2))*Dx + (-x**2 + x/2 + 1)*Dx**2 +\
  461. (x**2 + x/2)*Dx**3, x, 0, [2, 1, S.Half])
  462. assert p == q
  463. p = expr_to_holonomic(sin(x)**2/x)
  464. q = HolonomicFunction(4 + 4*x*Dx + 3*Dx**2 + x*Dx**3, x, 0, [0, 1, 0])
  465. assert p == q
  466. p = expr_to_holonomic(sin(x)**2/x, x0=2)
  467. q = HolonomicFunction((4) + (4*x)*Dx + (3)*Dx**2 + (x)*Dx**3, x, 2, [sin(2)**2/2,
  468. sin(2)*cos(2) - sin(2)**2/4, -3*sin(2)**2/4 + cos(2)**2 - sin(2)*cos(2)])
  469. assert p == q
  470. p = expr_to_holonomic(log(x)/2 - Ci(2*x)/2 + Ci(2)/2)
  471. q = HolonomicFunction(4*Dx + 4*x*Dx**2 + 3*Dx**3 + x*Dx**4, x, 0, \
  472. [-log(2)/2 - EulerGamma/2 + Ci(2)/2, 0, 1, 0])
  473. assert p == q
  474. p = p.to_expr()
  475. q = log(x)/2 - Ci(2*x)/2 + Ci(2)/2
  476. assert p == q
  477. p = expr_to_holonomic(x**S.Half, x0=1)
  478. q = HolonomicFunction(x*Dx - S.Half, x, 1, [1])
  479. assert p == q
  480. p = expr_to_holonomic(sqrt(1 + x**2))
  481. q = HolonomicFunction((-x) + (x**2 + 1)*Dx, x, 0, [1])
  482. assert p == q
  483. assert (expr_to_holonomic(sqrt(x) + sqrt(2*x)).to_expr()-\
  484. (sqrt(x) + sqrt(2*x))).simplify() == 0
  485. assert expr_to_holonomic(3*x+2*sqrt(x)).to_expr() == 3*x+2*sqrt(x)
  486. p = expr_to_holonomic((x**4+x**3+5*x**2+3*x+2)/x**2, lenics=3)
  487. q = HolonomicFunction((-2*x**4 - x**3 + 3*x + 4) + (x**5 + x**4 + 5*x**3 + 3*x**2 + \
  488. 2*x)*Dx, x, 0, {-2: [2, 3, 5]})
  489. assert p == q
  490. p = expr_to_holonomic(1/(x-1)**2, lenics=3, x0=1)
  491. q = HolonomicFunction((2) + (x - 1)*Dx, x, 1, {-2: [1, 0, 0]})
  492. assert p == q
  493. a = symbols("a")
  494. p = expr_to_holonomic(sqrt(a*x), x=x)
  495. assert p.to_expr() == sqrt(a)*sqrt(x)
  496. def test_to_hyper():
  497. x = symbols('x')
  498. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  499. p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper()
  500. q = 3 * hyper([], [], 2*x)
  501. assert p == q
  502. p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0, [2]).to_hyper()).expand()
  503. q = 2*x**3 + 6*x**2 + 6*x + 2
  504. assert p == q
  505. p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_hyper()
  506. q = -x**2*hyper((2, 2, 1), (3, 2), -x)/2 + x
  507. assert p == q
  508. p = HolonomicFunction(2*x*Dx + Dx**2, x, 0, [0, 2/sqrt(pi)]).to_hyper()
  509. q = 2*x*hyper((S.Half,), (Rational(3, 2),), -x**2)/sqrt(pi)
  510. assert p == q
  511. p = hyperexpand(HolonomicFunction(2*x*Dx + Dx**2, x, 0, [1, -2/sqrt(pi)]).to_hyper())
  512. q = erfc(x)
  513. assert p.rewrite(erfc) == q
  514. p = hyperexpand(HolonomicFunction((x**2 - 1) + x*Dx + x**2*Dx**2,
  515. x, 0, [0, S.Half]).to_hyper())
  516. q = besselj(1, x)
  517. assert p == q
  518. p = hyperexpand(HolonomicFunction(x*Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper())
  519. q = besselj(0, x)
  520. assert p == q
  521. def test_to_expr():
  522. x = symbols('x')
  523. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  524. p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
  525. q = exp(x)
  526. assert p == q
  527. p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
  528. q = cos(x)
  529. assert p == q
  530. p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
  531. q = cosh(x)
  532. assert p == q
  533. p = HolonomicFunction(2 + (4*x - 1)*Dx + \
  534. (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
  535. q = 1/(x**2 - 2*x + 1)
  536. assert p == q
  537. p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr()
  538. q = (sin(x)**2/x).integrate((x, 0, x))
  539. assert p == q
  540. C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
  541. p = expr_to_holonomic(log(1+x**2)).to_expr()
  542. q = C_2*log(x**2 + 1)
  543. assert p == q
  544. p = expr_to_holonomic(log(1+x**2)).diff().to_expr()
  545. q = C_0*x/(x**2 + 1)
  546. assert p == q
  547. p = expr_to_holonomic(erf(x) + x).to_expr()
  548. q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi)
  549. assert p == q
  550. p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
  551. assert p == sqrt(x)
  552. assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
  553. p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
  554. assert p == sqrt(1+x**2)
  555. p = expr_to_holonomic((2*x**2 + 1)**Rational(2, 3)).to_expr()
  556. assert p == (2*x**2 + 1)**Rational(2, 3)
  557. p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr()
  558. assert p == sqrt(x)*sqrt(-x + 2)
  559. p = expr_to_holonomic((-2*x**3+7*x)**Rational(2, 3)).to_expr()
  560. q = x**Rational(2, 3)*(-2*x**2 + 7)**Rational(2, 3)
  561. assert p == q
  562. p = from_hyper(hyper((-2, -3), (S.Half, ), x))
  563. s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
  564. D_0 = Symbol('D_0')
  565. C_0 = Symbol('C_0')
  566. assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0
  567. p.y0 = {0: [1], S.Half: [0]}
  568. assert p.to_expr() == s
  569. assert expr_to_holonomic(x**5).to_expr() == x**5
  570. assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
  571. 2*x**3-3*x**2
  572. a = symbols("a")
  573. p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr()
  574. q = 1.4*a*x**2
  575. assert p == q
  576. p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr()
  577. q = x*(a + 1.4)
  578. assert p == q
  579. p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr()
  580. assert p == 2.4*x
  581. def test_integrate():
  582. x = symbols('x')
  583. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  584. p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 2, 3))
  585. q = '0.166270406994788'
  586. assert sstr(p) == q
  587. p = expr_to_holonomic(sin(x)).integrate((x, 0, x)).to_expr()
  588. q = 1 - cos(x)
  589. assert p == q
  590. p = expr_to_holonomic(sin(x)).integrate((x, 0, 3))
  591. q = 1 - cos(3)
  592. assert p == q
  593. p = expr_to_holonomic(sin(x)/x, x0=1).integrate((x, 1, 2))
  594. q = '0.659329913368450'
  595. assert sstr(p) == q
  596. p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 1, 0))
  597. q = '-0.423690480850035'
  598. assert sstr(p) == q
  599. p = expr_to_holonomic(sin(x)/x)
  600. assert p.integrate(x).to_expr() == Si(x)
  601. assert p.integrate((x, 0, 2)) == Si(2)
  602. p = expr_to_holonomic(sin(x)**2/x)
  603. q = p.to_expr()
  604. assert p.integrate(x).to_expr() == q.integrate((x, 0, x))
  605. assert p.integrate((x, 0, 1)) == q.integrate((x, 0, 1))
  606. assert expr_to_holonomic(1/x, x0=1).integrate(x).to_expr() == log(x)
  607. p = expr_to_holonomic((x + 1)**3*exp(-x), x0=-1).integrate(x).to_expr()
  608. q = (-x**3 - 6*x**2 - 15*x + 6*exp(x + 1) - 16)*exp(-x)
  609. assert p == q
  610. p = expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).integrate(x).to_expr()
  611. q = -Si(2*x) - cos(x)**2/x
  612. assert p == q
  613. p = expr_to_holonomic(sqrt(x**2+x)).integrate(x).to_expr()
  614. q = (x**Rational(3, 2)*(2*x**2 + 3*x + 1) - x*sqrt(x + 1)*asinh(sqrt(x)))/(4*x*sqrt(x + 1))
  615. assert p == q
  616. p = expr_to_holonomic(sqrt(x**2+1)).integrate(x).to_expr()
  617. q = (sqrt(x**2+1)).integrate(x)
  618. assert (p-q).simplify() == 0
  619. p = expr_to_holonomic(1/x**2, y0={-2:[1, 0, 0]})
  620. r = expr_to_holonomic(1/x**2, lenics=3)
  621. assert p == r
  622. q = expr_to_holonomic(cos(x)**2)
  623. assert (r*q).integrate(x).to_expr() == -Si(2*x) - cos(x)**2/x
  624. def test_diff():
  625. x, y = symbols('x, y')
  626. R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
  627. p = HolonomicFunction(x*Dx**2 + 1, x, 0, [0, 1])
  628. assert p.diff().to_expr() == p.to_expr().diff().simplify()
  629. p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0])
  630. assert p.diff(x, 2).to_expr() == p.to_expr()
  631. p = expr_to_holonomic(Si(x))
  632. assert p.diff().to_expr() == sin(x)/x
  633. assert p.diff(y) == 0
  634. C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
  635. q = Si(x)
  636. assert p.diff(x).to_expr() == q.diff()
  637. assert p.diff(x, 2).to_expr().subs(C_0, Rational(-1, 3)).cancel() == q.diff(x, 2).cancel()
  638. assert p.diff(x, 3).series().subs({C_3: Rational(-1, 3), C_0: 0}) == q.diff(x, 3).series()
  639. def test_extended_domain_in_expr_to_holonomic():
  640. x = symbols('x')
  641. p = expr_to_holonomic(1.2*cos(3.1*x))
  642. assert p.to_expr() == 1.2*cos(3.1*x)
  643. assert sstr(p.integrate(x).to_expr()) == '0.387096774193548*sin(3.1*x)'
  644. _, Dx = DifferentialOperators(RR.old_poly_ring(x), 'Dx')
  645. p = expr_to_holonomic(1.1329138213*x)
  646. q = HolonomicFunction((-1.1329138213) + (1.1329138213*x)*Dx, x, 0, {1: [1.1329138213]})
  647. assert p == q
  648. assert p.to_expr() == 1.1329138213*x
  649. assert sstr(p.integrate((x, 1, 2))) == sstr((1.1329138213*x).integrate((x, 1, 2)))
  650. y, z = symbols('y, z')
  651. p = expr_to_holonomic(sin(x*y*z), x=x)
  652. assert p.to_expr() == sin(x*y*z)
  653. assert p.integrate(x).to_expr() == (-cos(x*y*z) + 1)/(y*z)
  654. p = expr_to_holonomic(sin(x*y + z), x=x).integrate(x).to_expr()
  655. q = (cos(z) - cos(x*y + z))/y
  656. assert p == q
  657. a = symbols('a')
  658. p = expr_to_holonomic(a*x, x)
  659. assert p.to_expr() == a*x
  660. assert p.integrate(x).to_expr() == a*x**2/2
  661. D_2, C_1 = symbols("D_2, C_1")
  662. p = expr_to_holonomic(x) + expr_to_holonomic(1.2*cos(x))
  663. p = p.to_expr().subs(D_2, 0)
  664. assert p - x - 1.2*cos(1.0*x) == 0
  665. p = expr_to_holonomic(x) * expr_to_holonomic(1.2*cos(x))
  666. p = p.to_expr().subs(C_1, 0)
  667. assert p - 1.2*x*cos(1.0*x) == 0
  668. def test_to_meijerg():
  669. x = symbols('x')
  670. assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x)
  671. assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x)
  672. assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x)
  673. assert hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() == log(x)
  674. assert expr_to_holonomic(4*x**2/3 + 7).to_meijerg() == 4*x**2/3 + 7
  675. assert hyperexpand(expr_to_holonomic(besselj(2, x), lenics=3).to_meijerg()) == besselj(2, x)
  676. p = hyper((Rational(-1, 2), -3), (), x)
  677. assert from_hyper(p).to_meijerg() == hyperexpand(p)
  678. p = hyper((S.One, S(3)), (S(2), ), x)
  679. assert (hyperexpand(from_hyper(p).to_meijerg()) - hyperexpand(p)).expand() == 0
  680. p = from_hyper(hyper((-2, -3), (S.Half, ), x))
  681. s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
  682. C_0 = Symbol('C_0')
  683. C_1 = Symbol('C_1')
  684. D_0 = Symbol('D_0')
  685. assert (hyperexpand(p.to_meijerg()).subs({C_0:1, D_0:0}) - s).simplify() == 0
  686. p.y0 = {0: [1], S.Half: [0]}
  687. assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0
  688. p = expr_to_holonomic(besselj(S.Half, x), initcond=False)
  689. assert (p.to_expr() - (D_0*sin(x) + C_0*cos(x) + C_1*sin(x))/sqrt(x)).simplify() == 0
  690. p = expr_to_holonomic(besselj(S.Half, x), y0={Rational(-1, 2): [sqrt(2)/sqrt(pi), sqrt(2)/sqrt(pi)]})
  691. assert (p.to_expr() - besselj(S.Half, x) - besselj(Rational(-1, 2), x)).simplify() == 0
  692. def test_gaussian():
  693. mu, x = symbols("mu x")
  694. sd = symbols("sd", positive=True)
  695. Q = QQ[mu, sd].get_field()
  696. e = sqrt(2)*exp(-(-mu + x)**2/(2*sd**2))/(2*sqrt(pi)*sd)
  697. h1 = expr_to_holonomic(e, x, domain=Q)
  698. _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
  699. h2 = HolonomicFunction((-mu/sd**2 + x/sd**2) + (1)*Dx, x)
  700. assert h1 == h2
  701. def test_beta():
  702. a, b, x = symbols("a b x", positive=True)
  703. e = x**(a - 1)*(-x + 1)**(b - 1)/beta(a, b)
  704. Q = QQ[a, b].get_field()
  705. h1 = expr_to_holonomic(e, x, domain=Q)
  706. _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
  707. h2 = HolonomicFunction((a + x*(-a - b + 2) - 1) + (x**2 - x)*Dx, x)
  708. assert h1 == h2
  709. def test_gamma():
  710. a, b, x = symbols("a b x", positive=True)
  711. e = b**(-a)*x**(a - 1)*exp(-x/b)/gamma(a)
  712. Q = QQ[a, b].get_field()
  713. h1 = expr_to_holonomic(e, x, domain=Q)
  714. _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
  715. h2 = HolonomicFunction((-a + 1 + x/b) + (x)*Dx, x)
  716. assert h1 == h2
  717. def test_symbolic_power():
  718. x, n = symbols("x n")
  719. Q = QQ[n].get_field()
  720. _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
  721. h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -n
  722. h2 = HolonomicFunction((n) + (x)*Dx, x)
  723. assert h1 == h2
  724. def test_negative_power():
  725. x = symbols("x")
  726. _, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  727. h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -2
  728. h2 = HolonomicFunction((2) + (x)*Dx, x)
  729. assert h1 == h2
  730. def test_expr_in_power():
  731. x, n = symbols("x n")
  732. Q = QQ[n].get_field()
  733. _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
  734. h1 = HolonomicFunction((-1) + (x)*Dx, x) ** (n - 3)
  735. h2 = HolonomicFunction((-n + 3) + (x)*Dx, x)
  736. assert h1 == h2
  737. def test_DifferentialOperatorEqPoly():
  738. x = symbols('x', integer=True)
  739. R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
  740. do = DifferentialOperator([x**2, R.base.zero, R.base.zero], R)
  741. do2 = DifferentialOperator([x**2, 1, x], R)
  742. assert not do == do2
  743. # polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799
  744. # should work once that is solved
  745. # p = do.listofpoly[0]
  746. # assert do == p
  747. p2 = do2.listofpoly[0]
  748. assert not do2 == p2