123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830 |
- from sympy.holonomic import (DifferentialOperator, HolonomicFunction,
- DifferentialOperators, from_hyper,
- from_meijerg, expr_to_holonomic)
- from sympy.holonomic.recurrence import RecurrenceOperators, HolonomicSequence
- from sympy.core import EulerGamma
- from sympy.core.numbers import (I, Rational, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.hyperbolic import (asinh, cosh)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import (cos, sin)
- from sympy.functions.special.bessel import besselj
- from sympy.functions.special.beta_functions import beta
- from sympy.functions.special.error_functions import (Ci, Si, erf, erfc)
- from sympy.functions.special.gamma_functions import gamma
- from sympy.functions.special.hyper import (hyper, meijerg)
- from sympy.printing.str import sstr
- from sympy.series.order import O
- from sympy.simplify.hyperexpand import hyperexpand
- from sympy.polys.domains.integerring import ZZ
- from sympy.polys.domains.rationalfield import QQ
- from sympy.polys.domains.realfield import RR
- def test_DifferentialOperator():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- assert Dx == R.derivative_operator
- assert Dx == DifferentialOperator([R.base.zero, R.base.one], R)
- assert x * Dx + x**2 * Dx**2 == DifferentialOperator([0, x, x**2], R)
- assert (x**2 + 1) + Dx + x * \
- Dx**5 == DifferentialOperator([x**2 + 1, 1, 0, 0, 0, x], R)
- assert (x * Dx + x**2 + 1 - Dx * (x**3 + x))**3 == (-48 * x**6) + \
- (-57 * x**7) * Dx + (-15 * x**8) * Dx**2 + (-x**9) * Dx**3
- p = (x * Dx**2 + (x**2 + 3) * Dx**5) * (Dx + x**2)
- q = (2 * x) + (4 * x**2) * Dx + (x**3) * Dx**2 + \
- (20 * x**2 + x + 60) * Dx**3 + (10 * x**3 + 30 * x) * Dx**4 + \
- (x**4 + 3 * x**2) * Dx**5 + (x**2 + 3) * Dx**6
- assert p == q
- def test_HolonomicFunction_addition():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx**2 * x, x)
- q = HolonomicFunction((2) * Dx + (x) * Dx**2, x)
- assert p == q
- p = HolonomicFunction(x * Dx + 1, x)
- q = HolonomicFunction(Dx + 1, x)
- r = HolonomicFunction((x - 2) + (x**2 - 2) * Dx + (x**2 - x) * Dx**2, x)
- assert p + q == r
- p = HolonomicFunction(x * Dx + Dx**2 * (x**2 + 2), x)
- q = HolonomicFunction(Dx - 3, x)
- r = HolonomicFunction((-54 * x**2 - 126 * x - 150) + (-135 * x**3 - 252 * x**2 - 270 * x + 140) * Dx +\
- (-27 * x**4 - 24 * x**2 + 14 * x - 150) * Dx**2 + \
- (9 * x**4 + 15 * x**3 + 38 * x**2 + 30 * x +40) * Dx**3, x)
- assert p + q == r
- p = HolonomicFunction(Dx**5 - 1, x)
- q = HolonomicFunction(x**3 + Dx, x)
- r = HolonomicFunction((-x**18 + 45*x**14 - 525*x**10 + 1575*x**6 - x**3 - 630*x**2) + \
- (-x**15 + 30*x**11 - 195*x**7 + 210*x**3 - 1)*Dx + (x**18 - 45*x**14 + 525*x**10 - \
- 1575*x**6 + x**3 + 630*x**2)*Dx**5 + (x**15 - 30*x**11 + 195*x**7 - 210*x**3 + \
- 1)*Dx**6, x)
- assert p+q == r
- p = x**2 + 3*x + 8
- q = x**3 - 7*x + 5
- p = p*Dx - p.diff()
- q = q*Dx - q.diff()
- r = HolonomicFunction(p, x) + HolonomicFunction(q, x)
- s = HolonomicFunction((6*x**2 + 18*x + 14) + (-4*x**3 - 18*x**2 - 62*x + 10)*Dx +\
- (x**4 + 6*x**3 + 31*x**2 - 10*x - 71)*Dx**2, x)
- assert r == s
- def test_HolonomicFunction_multiplication():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx+x+x*Dx**2, x)
- q = HolonomicFunction(x*Dx+Dx*x+Dx**2, x)
- r = HolonomicFunction((8*x**6 + 4*x**4 + 6*x**2 + 3) + (24*x**5 - 4*x**3 + 24*x)*Dx + \
- (8*x**6 + 20*x**4 + 12*x**2 + 2)*Dx**2 + (8*x**5 + 4*x**3 + 4*x)*Dx**3 + \
- (2*x**4 + x**2)*Dx**4, x)
- assert p*q == r
- p = HolonomicFunction(Dx**2+1, x)
- q = HolonomicFunction(Dx-1, x)
- r = HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x)
- assert p*q == r
- p = HolonomicFunction(Dx**2+1+x+Dx, x)
- q = HolonomicFunction((Dx*x-1)**2, x)
- r = HolonomicFunction((4*x**7 + 11*x**6 + 16*x**5 + 4*x**4 - 6*x**3 - 7*x**2 - 8*x - 2) + \
- (8*x**6 + 26*x**5 + 24*x**4 - 3*x**3 - 11*x**2 - 6*x - 2)*Dx + \
- (8*x**6 + 18*x**5 + 15*x**4 - 3*x**3 - 6*x**2 - 6*x - 2)*Dx**2 + (8*x**5 + \
- 10*x**4 + 6*x**3 - 2*x**2 - 4*x)*Dx**3 + (4*x**5 + 3*x**4 - x**2)*Dx**4, x)
- assert p*q == r
- p = HolonomicFunction(x*Dx**2-1, x)
- q = HolonomicFunction(Dx*x-x, x)
- r = HolonomicFunction((x - 3) + (-2*x + 2)*Dx + (x)*Dx**2, x)
- assert p*q == r
- def test_addition_initial_condition():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx-1, x, 0, [3])
- q = HolonomicFunction(Dx**2+1, x, 0, [1, 0])
- r = HolonomicFunction(-1 + Dx - Dx**2 + Dx**3, x, 0, [4, 3, 2])
- assert p + q == r
- p = HolonomicFunction(Dx - x + Dx**2, x, 0, [1, 2])
- q = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
- r = HolonomicFunction((-x**4 - x**3/4 - x**2 + Rational(1, 4)) + (x**3 + x**2/4 + x*Rational(3, 4) + 1)*Dx + \
- (x*Rational(-3, 2) + Rational(7, 4))*Dx**2 + (x**2 - x*Rational(7, 4) + Rational(1, 4))*Dx**3 + (x**2 + x/4 + S.Half)*Dx**4, x, 0, [2, 2, -2, 2])
- assert p + q == r
- p = HolonomicFunction(Dx**2 + 4*x*Dx + x**2, x, 0, [3, 4])
- q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
- r = HolonomicFunction((x**6 + 2*x**4 - 5*x**2 - 6) + (4*x**5 + 36*x**3 - 32*x)*Dx + \
- (x**6 + 3*x**4 + 5*x**2 - 9)*Dx**2 + (4*x**5 + 36*x**3 - 32*x)*Dx**3 + (x**4 + \
- 10*x**2 - 3)*Dx**4, x, 0, [4, 5, -1, -17])
- assert p + q == r
- q = HolonomicFunction(Dx**3 + x, x, 2, [3, 0, 1])
- p = HolonomicFunction(Dx - 1, x, 2, [1])
- r = HolonomicFunction((-x**2 - x + 1) + (x**2 + x)*Dx + (-x - 2)*Dx**3 + \
- (x + 1)*Dx**4, x, 2, [4, 1, 2, -5 ])
- assert p + q == r
- p = expr_to_holonomic(sin(x))
- q = expr_to_holonomic(1/x, x0=1)
- r = HolonomicFunction((x**2 + 6) + (x**3 + 2*x)*Dx + (x**2 + 6)*Dx**2 + (x**3 + 2*x)*Dx**3, \
- x, 1, [sin(1) + 1, -1 + cos(1), -sin(1) + 2])
- assert p + q == r
- C_1 = symbols('C_1')
- p = expr_to_holonomic(sqrt(x))
- q = expr_to_holonomic(sqrt(x**2-x))
- r = (p + q).to_expr().subs(C_1, -I/2).expand()
- assert r == I*sqrt(x)*sqrt(-x + 1) + sqrt(x)
- def test_multiplication_initial_condition():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx**2 + x*Dx - 1, x, 0, [3, 1])
- q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
- r = HolonomicFunction((x**4 + 14*x**2 + 60) + 4*x*Dx + (x**4 + 9*x**2 + 20)*Dx**2 + \
- (2*x**3 + 18*x)*Dx**3 + (x**2 + 10)*Dx**4, x, 0, [3, 4, 2, 3])
- assert p * q == r
- p = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
- q = HolonomicFunction(Dx**3 - x**2, x, 0, [3, 3, 3])
- r = HolonomicFunction((x**8 - 37*x**7/27 - 10*x**6/27 - 164*x**5/9 - 184*x**4/9 + \
- 160*x**3/27 + 404*x**2/9 + 8*x + Rational(40, 3)) + (6*x**7 - 128*x**6/9 - 98*x**5/9 - 28*x**4/9 + \
- 8*x**3/9 + 28*x**2 + x*Rational(40, 9) - 40)*Dx + (3*x**6 - 82*x**5/9 + 76*x**4/9 + 4*x**3/3 + \
- 220*x**2/9 - x*Rational(80, 3))*Dx**2 + (-2*x**6 + 128*x**5/27 - 2*x**4/3 -80*x**2/9 + Rational(200, 9))*Dx**3 + \
- (3*x**5 - 64*x**4/9 - 28*x**3/9 + 6*x**2 - x*Rational(20, 9) - Rational(20, 3))*Dx**4 + (-4*x**3 + 64*x**2/9 + \
- x*Rational(8, 3))*Dx**5 + (x**4 - 64*x**3/27 - 4*x**2/3 + Rational(20, 9))*Dx**6, x, 0, [3, 3, 3, -3, -12, -24])
- assert p * q == r
- p = HolonomicFunction(Dx - 1, x, 0, [2])
- q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
- r = HolonomicFunction(2 -2*Dx + Dx**2, x, 0, [0, 2])
- assert p * q == r
- q = HolonomicFunction(x*Dx**2 + 1 + 2*Dx, x, 0,[0, 1])
- r = HolonomicFunction((x - 1) + (-2*x + 2)*Dx + x*Dx**2, x, 0, [0, 2])
- assert p * q == r
- p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 3])
- q = HolonomicFunction(Dx**3 + 1, x, 0, [1, 2, 1])
- r = HolonomicFunction(6*Dx + 3*Dx**2 + 2*Dx**3 - 3*Dx**4 + Dx**6, x, 0, [1, 5, 14, 17, 17, 2])
- assert p * q == r
- p = expr_to_holonomic(sin(x))
- q = expr_to_holonomic(1/x, x0=1)
- r = HolonomicFunction(x + 2*Dx + x*Dx**2, x, 1, [sin(1), -sin(1) + cos(1)])
- assert p * q == r
- p = expr_to_holonomic(sqrt(x))
- q = expr_to_holonomic(sqrt(x**2-x))
- r = (p * q).to_expr()
- assert r == I*x*sqrt(-x + 1)
- def test_HolonomicFunction_composition():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx-1, x).composition(x**2+x)
- r = HolonomicFunction((-2*x - 1) + Dx, x)
- assert p == r
- p = HolonomicFunction(Dx**2+1, x).composition(x**5+x**2+1)
- r = HolonomicFunction((125*x**12 + 150*x**9 + 60*x**6 + 8*x**3) + (-20*x**3 - 2)*Dx + \
- (5*x**4 + 2*x)*Dx**2, x)
- assert p == r
- p = HolonomicFunction(Dx**2*x+x, x).composition(2*x**3+x**2+1)
- r = HolonomicFunction((216*x**9 + 324*x**8 + 180*x**7 + 152*x**6 + 112*x**5 + \
- 36*x**4 + 4*x**3) + (24*x**4 + 16*x**3 + 3*x**2 - 6*x - 1)*Dx + (6*x**5 + 5*x**4 + \
- x**3 + 3*x**2 + x)*Dx**2, x)
- assert p == r
- p = HolonomicFunction(Dx**2+1, x).composition(1-x**2)
- r = HolonomicFunction((4*x**3) - Dx + x*Dx**2, x)
- assert p == r
- p = HolonomicFunction(Dx**2+1, x).composition(x - 2/(x**2 + 1))
- r = HolonomicFunction((x**12 + 6*x**10 + 12*x**9 + 15*x**8 + 48*x**7 + 68*x**6 + \
- 72*x**5 + 111*x**4 + 112*x**3 + 54*x**2 + 12*x + 1) + (12*x**8 + 32*x**6 + \
- 24*x**4 - 4)*Dx + (x**12 + 6*x**10 + 4*x**9 + 15*x**8 + 16*x**7 + 20*x**6 + 24*x**5+ \
- 15*x**4 + 16*x**3 + 6*x**2 + 4*x + 1)*Dx**2, x)
- assert p == r
- def test_from_hyper():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- p = hyper([1, 1], [Rational(3, 2)], x**2/4)
- q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + Rational(4, 3)])
- r = from_hyper(p)
- assert r == q
- p = from_hyper(hyper([1], [Rational(3, 2)], x**2/4))
- q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x)
- # x0 = 1
- y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
- assert sstr(p.y0) == y0
- assert q.annihilator == p.annihilator
- def test_from_meijerg():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- p = from_meijerg(meijerg(([], [Rational(3, 2)]), ([S.Half], [S.Half, 1]), x))
- q = HolonomicFunction(x/2 - Rational(1, 4) + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \
- [1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))])
- assert p == q
- p = from_meijerg(meijerg(([], []), ([0], []), x))
- q = HolonomicFunction(1 + Dx, x, 0, [1])
- assert p == q
- p = from_meijerg(meijerg(([1], []), ([S.Half], [0]), x))
- q = HolonomicFunction((x + S.Half)*Dx + x*Dx**2, x, 1, [sqrt(pi)*erf(1), exp(-1)])
- assert p == q
- p = from_meijerg(meijerg(([0], [1]), ([0], []), 2*x**2))
- q = HolonomicFunction((3*x**2 - 1)*Dx + x**3*Dx**2, x, 1, [-exp(Rational(-1, 2)) + 1, -exp(Rational(-1, 2))])
- assert p == q
- def test_to_Sequence():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- n = symbols('n', integer=True)
- _, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
- p = HolonomicFunction(x**2*Dx**4 + x + Dx, x).to_sequence()
- q = [(HolonomicSequence(1 + (n + 2)*Sn**2 + (n**4 + 6*n**3 + 11*n**2 + 6*n)*Sn**3), 0, 1)]
- assert p == q
- p = HolonomicFunction(x**2*Dx**4 + x**3 + Dx**2, x).to_sequence()
- q = [(HolonomicSequence(1 + (n**4 + 14*n**3 + 72*n**2 + 163*n + 140)*Sn**5), 0, 0)]
- assert p == q
- p = HolonomicFunction(x**3*Dx**4 + 1 + Dx**2, x).to_sequence()
- q = [(HolonomicSequence(1 + (n**4 - 2*n**3 - n**2 + 2*n)*Sn + (n**2 + 3*n + 2)*Sn**2), 0, 0)]
- assert p == q
- p = HolonomicFunction(3*x**3*Dx**4 + 2*x*Dx + x*Dx**3, x).to_sequence()
- q = [(HolonomicSequence(2*n + (3*n**4 - 6*n**3 - 3*n**2 + 6*n)*Sn + (n**3 + 3*n**2 + 2*n)*Sn**2), 0, 1)]
- assert p == q
- def test_to_Sequence_Initial_Coniditons():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- n = symbols('n', integer=True)
- _, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
- p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
- q = [(HolonomicSequence(-1 + (n + 1)*Sn, 1), 0)]
- assert p == q
- p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence()
- q = [(HolonomicSequence(1 + (n**2 + 3*n + 2)*Sn**2, [0, 1]), 0)]
- assert p == q
- p = HolonomicFunction(Dx**2 + 1 + x**3*Dx, x, 0, [2, 3]).to_sequence()
- q = [(HolonomicSequence(n + Sn**2 + (n**2 + 7*n + 12)*Sn**4, [2, 3, -1, Rational(-1, 2), Rational(1, 12)]), 1)]
- assert p == q
- p = HolonomicFunction(x**3*Dx**5 + 1 + Dx, x).to_sequence()
- q = [(HolonomicSequence(1 + (n + 1)*Sn + (n**5 - 5*n**3 + 4*n)*Sn**2), 0, 3)]
- assert p == q
- C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
- p = expr_to_holonomic(log(1+x**2))
- q = [(HolonomicSequence(n**2 + (n**2 + 2*n)*Sn**2, [0, 0, C_2]), 0, 1)]
- assert p.to_sequence() == q
- p = p.diff()
- q = [(HolonomicSequence((n + 2) + (n + 2)*Sn**2, [C_0, 0]), 1, 0)]
- assert p.to_sequence() == q
- p = expr_to_holonomic(erf(x) + x).to_sequence()
- q = [(HolonomicSequence((2*n**2 - 2*n) + (n**3 + 2*n**2 - n - 2)*Sn**2, [0, 1 + 2/sqrt(pi), 0, C_3]), 0, 2)]
- assert p == q
- def test_series():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx**2 + 2*x*Dx, x, 0, [0, 1]).series(n=10)
- q = x - x**3/3 + x**5/10 - x**7/42 + x**9/216 + O(x**10)
- assert p == q
- p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
- q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x)
- r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2)
- s = 1 + x**2/2 + x**4/24 - 31*x**6/720 - 179*x**8/8064 + O(x**10)
- assert r == s
- t = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x)
- r = (p * t + q).series(n=10)
- s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\
- 71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10)
- assert r == s
- p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
- (4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7)
- q = x + x**3/6 - 3*x**4/16 + x**5/20 - 23*x**6/960 + O(x**7)
- assert p == q
- p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
- (4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7)
- q = 1 - 3*x**2/4 - x**3/4 - 5*x**4/32 - 3*x**5/40 - 17*x**6/384 + O(x**7)
- assert p == q
- p = expr_to_holonomic(erf(x) + x).series(n=10)
- C_3 = symbols('C_3')
- q = (erf(x) + x).series(n=10)
- assert p.subs(C_3, -2/(3*sqrt(pi))) == q
- assert expr_to_holonomic(sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10)
- assert expr_to_holonomic((2*x - 3*x**2)**Rational(1, 3)).series() == ((2*x - 3*x**2)**Rational(1, 3)).series()
- assert expr_to_holonomic(sqrt(x**2-x)).series() == (sqrt(x**2-x)).series()
- assert expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).series(n=10) == (cos(x)**2/x**2).series(n=10)
- assert expr_to_holonomic(cos(x)**2/x**2, x0=1).series(n=10).together() == (cos(x)**2/x**2).series(n=10, x0=1).together()
- assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \
- == (cos(x-1)**2/(x-1)**2).series(x0=1, n=10)
- def test_evalf_euler():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- # log(1+x)
- p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1])
- # path taken is a straight line from 0 to 1, on the real axis
- r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
- s = '0.699525841805253' # approx. equal to log(2) i.e. 0.693147180559945
- assert sstr(p.evalf(r, method='Euler')[-1]) == s
- # path taken is a triangle 0-->1+i-->2
- r = [0.1 + 0.1*I]
- for i in range(9):
- r.append(r[-1]+0.1+0.1*I)
- for i in range(10):
- r.append(r[-1]+0.1-0.1*I)
- # close to the exact solution 1.09861228866811
- # imaginary part also close to zero
- s = '1.07530466271334 - 0.0251200594793912*I'
- assert sstr(p.evalf(r, method='Euler')[-1]) == s
- # sin(x)
- p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
- s = '0.905546532085401 - 6.93889390390723e-18*I'
- assert sstr(p.evalf(r, method='Euler')[-1]) == s
- # computing sin(pi/2) using this method
- # using a linear path from 0 to pi/2
- r = [0.1]
- for i in range(14):
- r.append(r[-1] + 0.1)
- r.append(pi/2)
- s = '1.08016557252834' # close to 1.0 (exact solution)
- assert sstr(p.evalf(r, method='Euler')[-1]) == s
- # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
- # computing the same value sin(pi/2) using different path
- r = [0.1*I]
- for i in range(9):
- r.append(r[-1]+0.1*I)
- for i in range(15):
- r.append(r[-1]+0.1)
- r.append(pi/2+I)
- for i in range(10):
- r.append(r[-1]-0.1*I)
- # close to 1.0
- s = '0.976882381836257 - 1.65557671738537e-16*I'
- assert sstr(p.evalf(r, method='Euler')[-1]) == s
- # cos(x)
- p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
- # compute cos(pi) along 0-->pi
- r = [0.05]
- for i in range(61):
- r.append(r[-1]+0.05)
- r.append(pi)
- # close to -1 (exact answer)
- s = '-1.08140824719196'
- assert sstr(p.evalf(r, method='Euler')[-1]) == s
- # a rectangular path (0 -> i -> 2+i -> 2)
- r = [0.1*I]
- for i in range(9):
- r.append(r[-1]+0.1*I)
- for i in range(20):
- r.append(r[-1]+0.1)
- for i in range(10):
- r.append(r[-1]-0.1*I)
- p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r, method='Euler')
- s = '0.501421652861245 - 3.88578058618805e-16*I'
- assert sstr(p[-1]) == s
- def test_evalf_rk4():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- # log(1+x)
- p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1])
- # path taken is a straight line from 0 to 1, on the real axis
- r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
- s = '0.693146363174626' # approx. equal to log(2) i.e. 0.693147180559945
- assert sstr(p.evalf(r)[-1]) == s
- # path taken is a triangle 0-->1+i-->2
- r = [0.1 + 0.1*I]
- for i in range(9):
- r.append(r[-1]+0.1+0.1*I)
- for i in range(10):
- r.append(r[-1]+0.1-0.1*I)
- # close to the exact solution 1.09861228866811
- # imaginary part also close to zero
- s = '1.098616 + 1.36083e-7*I'
- assert sstr(p.evalf(r)[-1].n(7)) == s
- # sin(x)
- p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
- s = '0.90929463522785 + 1.52655665885959e-16*I'
- assert sstr(p.evalf(r)[-1]) == s
- # computing sin(pi/2) using this method
- # using a linear path from 0 to pi/2
- r = [0.1]
- for i in range(14):
- r.append(r[-1] + 0.1)
- r.append(pi/2)
- s = '0.999999895088917' # close to 1.0 (exact solution)
- assert sstr(p.evalf(r)[-1]) == s
- # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
- # computing the same value sin(pi/2) using different path
- r = [0.1*I]
- for i in range(9):
- r.append(r[-1]+0.1*I)
- for i in range(15):
- r.append(r[-1]+0.1)
- r.append(pi/2+I)
- for i in range(10):
- r.append(r[-1]-0.1*I)
- # close to 1.0
- s = '1.00000003415141 + 6.11940487991086e-16*I'
- assert sstr(p.evalf(r)[-1]) == s
- # cos(x)
- p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
- # compute cos(pi) along 0-->pi
- r = [0.05]
- for i in range(61):
- r.append(r[-1]+0.05)
- r.append(pi)
- # close to -1 (exact answer)
- s = '-0.999999993238714'
- assert sstr(p.evalf(r)[-1]) == s
- # a rectangular path (0 -> i -> 2+i -> 2)
- r = [0.1*I]
- for i in range(9):
- r.append(r[-1]+0.1*I)
- for i in range(20):
- r.append(r[-1]+0.1)
- for i in range(10):
- r.append(r[-1]-0.1*I)
- p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r)
- s = '0.493152791638442 - 1.41553435639707e-15*I'
- assert sstr(p[-1]) == s
- def test_expr_to_holonomic():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- p = expr_to_holonomic((sin(x)/x)**2)
- q = HolonomicFunction(8*x + (4*x**2 + 6)*Dx + 6*x*Dx**2 + x**2*Dx**3, x, 0, \
- [1, 0, Rational(-2, 3)])
- assert p == q
- p = expr_to_holonomic(1/(1+x**2)**2)
- q = HolonomicFunction(4*x + (x**2 + 1)*Dx, x, 0, [1])
- assert p == q
- p = expr_to_holonomic(exp(x)*sin(x)+x*log(1+x))
- q = HolonomicFunction((2*x**3 + 10*x**2 + 20*x + 18) + (-2*x**4 - 10*x**3 - 20*x**2 \
- - 18*x)*Dx + (2*x**5 + 6*x**4 + 7*x**3 + 8*x**2 + 10*x - 4)*Dx**2 + \
- (-2*x**5 - 5*x**4 - 2*x**3 + 2*x**2 - x + 4)*Dx**3 + (x**5 + 2*x**4 - x**3 - \
- 7*x**2/2 + x + Rational(5, 2))*Dx**4, x, 0, [0, 1, 4, -1])
- assert p == q
- p = expr_to_holonomic(x*exp(x)+cos(x)+1)
- q = HolonomicFunction((-x - 3)*Dx + (x + 2)*Dx**2 + (-x - 3)*Dx**3 + (x + 2)*Dx**4, x, \
- 0, [2, 1, 1, 3])
- assert p == q
- assert (x*exp(x)+cos(x)+1).series(n=10) == p.series(n=10)
- p = expr_to_holonomic(log(1 + x)**2 + 1)
- q = HolonomicFunction(Dx + (3*x + 3)*Dx**2 + (x**2 + 2*x + 1)*Dx**3, x, 0, [1, 0, 2])
- assert p == q
- p = expr_to_holonomic(erf(x)**2 + x)
- q = HolonomicFunction((8*x**4 - 2*x**2 + 2)*Dx**2 + (6*x**3 - x/2)*Dx**3 + \
- (x**2+ Rational(1, 4))*Dx**4, x, 0, [0, 1, 8/pi, 0])
- assert p == q
- p = expr_to_holonomic(cosh(x)*x)
- q = HolonomicFunction((-x**2 + 2) -2*x*Dx + x**2*Dx**2, x, 0, [0, 1])
- assert p == q
- p = expr_to_holonomic(besselj(2, x))
- q = HolonomicFunction((x**2 - 4) + x*Dx + x**2*Dx**2, x, 0, [0, 0])
- assert p == q
- p = expr_to_holonomic(besselj(0, x) + exp(x))
- q = HolonomicFunction((-x**2 - x/2 + S.Half) + (x**2 - x/2 - Rational(3, 2))*Dx + (-x**2 + x/2 + 1)*Dx**2 +\
- (x**2 + x/2)*Dx**3, x, 0, [2, 1, S.Half])
- assert p == q
- p = expr_to_holonomic(sin(x)**2/x)
- q = HolonomicFunction(4 + 4*x*Dx + 3*Dx**2 + x*Dx**3, x, 0, [0, 1, 0])
- assert p == q
- p = expr_to_holonomic(sin(x)**2/x, x0=2)
- q = HolonomicFunction((4) + (4*x)*Dx + (3)*Dx**2 + (x)*Dx**3, x, 2, [sin(2)**2/2,
- sin(2)*cos(2) - sin(2)**2/4, -3*sin(2)**2/4 + cos(2)**2 - sin(2)*cos(2)])
- assert p == q
- p = expr_to_holonomic(log(x)/2 - Ci(2*x)/2 + Ci(2)/2)
- q = HolonomicFunction(4*Dx + 4*x*Dx**2 + 3*Dx**3 + x*Dx**4, x, 0, \
- [-log(2)/2 - EulerGamma/2 + Ci(2)/2, 0, 1, 0])
- assert p == q
- p = p.to_expr()
- q = log(x)/2 - Ci(2*x)/2 + Ci(2)/2
- assert p == q
- p = expr_to_holonomic(x**S.Half, x0=1)
- q = HolonomicFunction(x*Dx - S.Half, x, 1, [1])
- assert p == q
- p = expr_to_holonomic(sqrt(1 + x**2))
- q = HolonomicFunction((-x) + (x**2 + 1)*Dx, x, 0, [1])
- assert p == q
- assert (expr_to_holonomic(sqrt(x) + sqrt(2*x)).to_expr()-\
- (sqrt(x) + sqrt(2*x))).simplify() == 0
- assert expr_to_holonomic(3*x+2*sqrt(x)).to_expr() == 3*x+2*sqrt(x)
- p = expr_to_holonomic((x**4+x**3+5*x**2+3*x+2)/x**2, lenics=3)
- q = HolonomicFunction((-2*x**4 - x**3 + 3*x + 4) + (x**5 + x**4 + 5*x**3 + 3*x**2 + \
- 2*x)*Dx, x, 0, {-2: [2, 3, 5]})
- assert p == q
- p = expr_to_holonomic(1/(x-1)**2, lenics=3, x0=1)
- q = HolonomicFunction((2) + (x - 1)*Dx, x, 1, {-2: [1, 0, 0]})
- assert p == q
- a = symbols("a")
- p = expr_to_holonomic(sqrt(a*x), x=x)
- assert p.to_expr() == sqrt(a)*sqrt(x)
- def test_to_hyper():
- x = symbols('x')
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper()
- q = 3 * hyper([], [], 2*x)
- assert p == q
- p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0, [2]).to_hyper()).expand()
- q = 2*x**3 + 6*x**2 + 6*x + 2
- assert p == q
- p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_hyper()
- q = -x**2*hyper((2, 2, 1), (3, 2), -x)/2 + x
- assert p == q
- p = HolonomicFunction(2*x*Dx + Dx**2, x, 0, [0, 2/sqrt(pi)]).to_hyper()
- q = 2*x*hyper((S.Half,), (Rational(3, 2),), -x**2)/sqrt(pi)
- assert p == q
- p = hyperexpand(HolonomicFunction(2*x*Dx + Dx**2, x, 0, [1, -2/sqrt(pi)]).to_hyper())
- q = erfc(x)
- assert p.rewrite(erfc) == q
- p = hyperexpand(HolonomicFunction((x**2 - 1) + x*Dx + x**2*Dx**2,
- x, 0, [0, S.Half]).to_hyper())
- q = besselj(1, x)
- assert p == q
- p = hyperexpand(HolonomicFunction(x*Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper())
- q = besselj(0, x)
- assert p == q
- def test_to_expr():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
- q = exp(x)
- assert p == q
- p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
- q = cos(x)
- assert p == q
- p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
- q = cosh(x)
- assert p == q
- p = HolonomicFunction(2 + (4*x - 1)*Dx + \
- (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
- q = 1/(x**2 - 2*x + 1)
- assert p == q
- p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr()
- q = (sin(x)**2/x).integrate((x, 0, x))
- assert p == q
- C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
- p = expr_to_holonomic(log(1+x**2)).to_expr()
- q = C_2*log(x**2 + 1)
- assert p == q
- p = expr_to_holonomic(log(1+x**2)).diff().to_expr()
- q = C_0*x/(x**2 + 1)
- assert p == q
- p = expr_to_holonomic(erf(x) + x).to_expr()
- q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi)
- assert p == q
- p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
- assert p == sqrt(x)
- assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
- p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
- assert p == sqrt(1+x**2)
- p = expr_to_holonomic((2*x**2 + 1)**Rational(2, 3)).to_expr()
- assert p == (2*x**2 + 1)**Rational(2, 3)
- p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr()
- assert p == sqrt(x)*sqrt(-x + 2)
- p = expr_to_holonomic((-2*x**3+7*x)**Rational(2, 3)).to_expr()
- q = x**Rational(2, 3)*(-2*x**2 + 7)**Rational(2, 3)
- assert p == q
- p = from_hyper(hyper((-2, -3), (S.Half, ), x))
- s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
- D_0 = Symbol('D_0')
- C_0 = Symbol('C_0')
- assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0
- p.y0 = {0: [1], S.Half: [0]}
- assert p.to_expr() == s
- assert expr_to_holonomic(x**5).to_expr() == x**5
- assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
- 2*x**3-3*x**2
- a = symbols("a")
- p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr()
- q = 1.4*a*x**2
- assert p == q
- p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr()
- q = x*(a + 1.4)
- assert p == q
- p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr()
- assert p == 2.4*x
- def test_integrate():
- x = symbols('x')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 2, 3))
- q = '0.166270406994788'
- assert sstr(p) == q
- p = expr_to_holonomic(sin(x)).integrate((x, 0, x)).to_expr()
- q = 1 - cos(x)
- assert p == q
- p = expr_to_holonomic(sin(x)).integrate((x, 0, 3))
- q = 1 - cos(3)
- assert p == q
- p = expr_to_holonomic(sin(x)/x, x0=1).integrate((x, 1, 2))
- q = '0.659329913368450'
- assert sstr(p) == q
- p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 1, 0))
- q = '-0.423690480850035'
- assert sstr(p) == q
- p = expr_to_holonomic(sin(x)/x)
- assert p.integrate(x).to_expr() == Si(x)
- assert p.integrate((x, 0, 2)) == Si(2)
- p = expr_to_holonomic(sin(x)**2/x)
- q = p.to_expr()
- assert p.integrate(x).to_expr() == q.integrate((x, 0, x))
- assert p.integrate((x, 0, 1)) == q.integrate((x, 0, 1))
- assert expr_to_holonomic(1/x, x0=1).integrate(x).to_expr() == log(x)
- p = expr_to_holonomic((x + 1)**3*exp(-x), x0=-1).integrate(x).to_expr()
- q = (-x**3 - 6*x**2 - 15*x + 6*exp(x + 1) - 16)*exp(-x)
- assert p == q
- p = expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).integrate(x).to_expr()
- q = -Si(2*x) - cos(x)**2/x
- assert p == q
- p = expr_to_holonomic(sqrt(x**2+x)).integrate(x).to_expr()
- q = (x**Rational(3, 2)*(2*x**2 + 3*x + 1) - x*sqrt(x + 1)*asinh(sqrt(x)))/(4*x*sqrt(x + 1))
- assert p == q
- p = expr_to_holonomic(sqrt(x**2+1)).integrate(x).to_expr()
- q = (sqrt(x**2+1)).integrate(x)
- assert (p-q).simplify() == 0
- p = expr_to_holonomic(1/x**2, y0={-2:[1, 0, 0]})
- r = expr_to_holonomic(1/x**2, lenics=3)
- assert p == r
- q = expr_to_holonomic(cos(x)**2)
- assert (r*q).integrate(x).to_expr() == -Si(2*x) - cos(x)**2/x
- def test_diff():
- x, y = symbols('x, y')
- R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
- p = HolonomicFunction(x*Dx**2 + 1, x, 0, [0, 1])
- assert p.diff().to_expr() == p.to_expr().diff().simplify()
- p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0])
- assert p.diff(x, 2).to_expr() == p.to_expr()
- p = expr_to_holonomic(Si(x))
- assert p.diff().to_expr() == sin(x)/x
- assert p.diff(y) == 0
- C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
- q = Si(x)
- assert p.diff(x).to_expr() == q.diff()
- assert p.diff(x, 2).to_expr().subs(C_0, Rational(-1, 3)).cancel() == q.diff(x, 2).cancel()
- assert p.diff(x, 3).series().subs({C_3: Rational(-1, 3), C_0: 0}) == q.diff(x, 3).series()
- def test_extended_domain_in_expr_to_holonomic():
- x = symbols('x')
- p = expr_to_holonomic(1.2*cos(3.1*x))
- assert p.to_expr() == 1.2*cos(3.1*x)
- assert sstr(p.integrate(x).to_expr()) == '0.387096774193548*sin(3.1*x)'
- _, Dx = DifferentialOperators(RR.old_poly_ring(x), 'Dx')
- p = expr_to_holonomic(1.1329138213*x)
- q = HolonomicFunction((-1.1329138213) + (1.1329138213*x)*Dx, x, 0, {1: [1.1329138213]})
- assert p == q
- assert p.to_expr() == 1.1329138213*x
- assert sstr(p.integrate((x, 1, 2))) == sstr((1.1329138213*x).integrate((x, 1, 2)))
- y, z = symbols('y, z')
- p = expr_to_holonomic(sin(x*y*z), x=x)
- assert p.to_expr() == sin(x*y*z)
- assert p.integrate(x).to_expr() == (-cos(x*y*z) + 1)/(y*z)
- p = expr_to_holonomic(sin(x*y + z), x=x).integrate(x).to_expr()
- q = (cos(z) - cos(x*y + z))/y
- assert p == q
- a = symbols('a')
- p = expr_to_holonomic(a*x, x)
- assert p.to_expr() == a*x
- assert p.integrate(x).to_expr() == a*x**2/2
- D_2, C_1 = symbols("D_2, C_1")
- p = expr_to_holonomic(x) + expr_to_holonomic(1.2*cos(x))
- p = p.to_expr().subs(D_2, 0)
- assert p - x - 1.2*cos(1.0*x) == 0
- p = expr_to_holonomic(x) * expr_to_holonomic(1.2*cos(x))
- p = p.to_expr().subs(C_1, 0)
- assert p - 1.2*x*cos(1.0*x) == 0
- def test_to_meijerg():
- x = symbols('x')
- assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x)
- assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x)
- assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x)
- assert hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() == log(x)
- assert expr_to_holonomic(4*x**2/3 + 7).to_meijerg() == 4*x**2/3 + 7
- assert hyperexpand(expr_to_holonomic(besselj(2, x), lenics=3).to_meijerg()) == besselj(2, x)
- p = hyper((Rational(-1, 2), -3), (), x)
- assert from_hyper(p).to_meijerg() == hyperexpand(p)
- p = hyper((S.One, S(3)), (S(2), ), x)
- assert (hyperexpand(from_hyper(p).to_meijerg()) - hyperexpand(p)).expand() == 0
- p = from_hyper(hyper((-2, -3), (S.Half, ), x))
- s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
- C_0 = Symbol('C_0')
- C_1 = Symbol('C_1')
- D_0 = Symbol('D_0')
- assert (hyperexpand(p.to_meijerg()).subs({C_0:1, D_0:0}) - s).simplify() == 0
- p.y0 = {0: [1], S.Half: [0]}
- assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0
- p = expr_to_holonomic(besselj(S.Half, x), initcond=False)
- assert (p.to_expr() - (D_0*sin(x) + C_0*cos(x) + C_1*sin(x))/sqrt(x)).simplify() == 0
- p = expr_to_holonomic(besselj(S.Half, x), y0={Rational(-1, 2): [sqrt(2)/sqrt(pi), sqrt(2)/sqrt(pi)]})
- assert (p.to_expr() - besselj(S.Half, x) - besselj(Rational(-1, 2), x)).simplify() == 0
- def test_gaussian():
- mu, x = symbols("mu x")
- sd = symbols("sd", positive=True)
- Q = QQ[mu, sd].get_field()
- e = sqrt(2)*exp(-(-mu + x)**2/(2*sd**2))/(2*sqrt(pi)*sd)
- h1 = expr_to_holonomic(e, x, domain=Q)
- _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
- h2 = HolonomicFunction((-mu/sd**2 + x/sd**2) + (1)*Dx, x)
- assert h1 == h2
- def test_beta():
- a, b, x = symbols("a b x", positive=True)
- e = x**(a - 1)*(-x + 1)**(b - 1)/beta(a, b)
- Q = QQ[a, b].get_field()
- h1 = expr_to_holonomic(e, x, domain=Q)
- _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
- h2 = HolonomicFunction((a + x*(-a - b + 2) - 1) + (x**2 - x)*Dx, x)
- assert h1 == h2
- def test_gamma():
- a, b, x = symbols("a b x", positive=True)
- e = b**(-a)*x**(a - 1)*exp(-x/b)/gamma(a)
- Q = QQ[a, b].get_field()
- h1 = expr_to_holonomic(e, x, domain=Q)
- _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
- h2 = HolonomicFunction((-a + 1 + x/b) + (x)*Dx, x)
- assert h1 == h2
- def test_symbolic_power():
- x, n = symbols("x n")
- Q = QQ[n].get_field()
- _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
- h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -n
- h2 = HolonomicFunction((n) + (x)*Dx, x)
- assert h1 == h2
- def test_negative_power():
- x = symbols("x")
- _, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -2
- h2 = HolonomicFunction((2) + (x)*Dx, x)
- assert h1 == h2
- def test_expr_in_power():
- x, n = symbols("x n")
- Q = QQ[n].get_field()
- _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
- h1 = HolonomicFunction((-1) + (x)*Dx, x) ** (n - 3)
- h2 = HolonomicFunction((-n + 3) + (x)*Dx, x)
- assert h1 == h2
- def test_DifferentialOperatorEqPoly():
- x = symbols('x', integer=True)
- R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
- do = DifferentialOperator([x**2, R.base.zero, R.base.zero], R)
- do2 = DifferentialOperator([x**2, 1, x], R)
- assert not do == do2
- # polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799
- # should work once that is solved
- # p = do.listofpoly[0]
- # assert do == p
- p2 = do2.listofpoly[0]
- assert not do2 == p2
|