123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601 |
- from sympy.core import expand
- from sympy.core.numbers import (Rational, oo, pi)
- from sympy.core.relational import Eq
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.complexes import Abs
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import sec
- from sympy.geometry.line import Segment2D
- from sympy.geometry.point import Point2D
- from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point,
- Polygon, Ray, RegularPolygon, Segment,
- Triangle, intersection)
- from sympy.testing.pytest import raises, slow
- from sympy.integrals.integrals import integrate
- from sympy.functions.special.elliptic_integrals import elliptic_e
- from sympy.functions.elementary.miscellaneous import Max
- def test_ellipse_equation_using_slope():
- from sympy.abc import x, y
- e1 = Ellipse(Point(1, 0), 3, 2)
- assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)
- e2 = Ellipse(Point(0, 0), 4, 1)
- assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)
- e3 = Ellipse(Point(1, 5), 6, 2)
- assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
- def test_object_from_equation():
- from sympy.abc import x, y, a, b, c, d, e
- assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2)
- assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0)
- assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0)
- assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5)
- assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0)
- assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0)
- assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1)
- assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1)
- assert Circle((x - 1)**2 + y**2 - 9) == Circle(Point2D(1, 0), 3)
- assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(Rational(-1, 2), Rational(-2, 3)), 5*sqrt(7)/6)
- assert Circle(Eq(a**2 + b**2, 25), x='a', y=b) == Circle(Point2D(0, 0), 5)
- raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26))
- raises(GeometryError, lambda: Circle(x**2 + y**2 + 25))
- raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b'))
- raises(GeometryError, lambda: Circle(x**2 + 6*y + 8))
- raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25))
- raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8))
- # .equation() adds 'real=True' assumption; '==' would fail if assumptions differed
- x, y = symbols('x y', real=True)
- eq = a*x**2 + a*y**2 + c*x + d*y + e
- assert expand(Circle(eq).equation()*a) == eq
- @slow
- def test_ellipse_geom():
- x = Symbol('x', real=True)
- y = Symbol('y', real=True)
- t = Symbol('t', real=True)
- y1 = Symbol('y1', real=True)
- half = S.Half
- p1 = Point(0, 0)
- p2 = Point(1, 1)
- p4 = Point(0, 1)
- e1 = Ellipse(p1, 1, 1)
- e2 = Ellipse(p2, half, 1)
- e3 = Ellipse(p1, y1, y1)
- c1 = Circle(p1, 1)
- c2 = Circle(p2, 1)
- c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
- l1 = Line(p1, p2)
- # Test creation with three points
- cen, rad = Point(3*half, 2), 5*half
- assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
- assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))
- raises(ValueError, lambda: Ellipse(None, None, None, 1))
- raises(ValueError, lambda: Ellipse())
- raises(GeometryError, lambda: Circle(Point(0, 0)))
- raises(GeometryError, lambda: Circle(Symbol('x')*Symbol('y')))
- # Basic Stuff
- assert Ellipse(None, 1, 1).center == Point(0, 0)
- assert e1 == c1
- assert e1 != e2
- assert e1 != l1
- assert p4 in e1
- assert e1 in e1
- assert e2 in e2
- assert 1 not in e2
- assert p2 not in e2
- assert e1.area == pi
- assert e2.area == pi/2
- assert e3.area == pi*y1*abs(y1)
- assert c1.area == e1.area
- assert c1.circumference == e1.circumference
- assert e3.circumference == 2*pi*y1
- assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
- assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
- assert c1.minor == 1
- assert c1.major == 1
- assert c1.hradius == 1
- assert c1.vradius == 1
- assert Ellipse((1, 1), 0, 0) == Point(1, 1)
- assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
- assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))
- # Private Functions
- assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
- assert c1 in e1
- assert (Line(p1, p2) in e1) is False
- assert e1.__cmp__(e1) == 0
- assert e1.__cmp__(Point(0, 0)) > 0
- # Encloses
- assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
- assert e1.encloses(Line(p1, p2)) is False
- assert e1.encloses(Ray(p1, p2)) is False
- assert e1.encloses(e1) is False
- assert e1.encloses(
- Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
- assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
- assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
- assert e1.encloses(RegularPolygon(p2, 5, 3)) is False
- assert e2.arbitrary_point() in e2
- raises(ValueError, lambda: Ellipse(Point(x, y), 1, 1).arbitrary_point(parameter='x'))
- # Foci
- f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
- ef = Ellipse(Point(0, 0), 4, 2)
- assert ef.foci in [(f1, f2), (f2, f1)]
- # Tangents
- v = sqrt(2) / 2
- p1_1 = Point(v, v)
- p1_2 = p2 + Point(half, 0)
- p1_3 = p2 + Point(0, 1)
- assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
- assert e2.tangent_lines(p1_2) == [Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))]
- assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(Rational(5, 4), 2))]
- assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
- assert c1.tangent_lines(p1) == []
- assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
- assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
- assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
- assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
- assert c1.is_tangent(e1) is True
- assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
- assert c1.is_tangent(
- Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
- assert c1.is_tangent(
- Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
- assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False
- assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
- [Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))),
- Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))]
- assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
- [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
- assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
- [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
- assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
- [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
- Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]
- assert Circle(Point(5, 5), 5).tangent_lines(Point(4, 0)) == \
- [Line(Point(4, 0), Point(Rational(40, 13), Rational(5, 13))),
- Line(Point(4, 0), Point(5, 0))]
- assert Circle(Point(5, 5), 5).tangent_lines(Point(0, 6)) == \
- [Line(Point(0, 6), Point(0, 7)),
- Line(Point(0, 6), Point(Rational(5, 13), Rational(90, 13)))]
- # for numerical calculations, we shouldn't demand exact equality,
- # so only test up to the desired precision
- def lines_close(l1, l2, prec):
- """ tests whether l1 and 12 are within 10**(-prec)
- of each other """
- return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
- def line_list_close(ll1, ll2, prec):
- return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))
- e = Ellipse(Point(0, 0), 2, 1)
- assert e.normal_lines(Point(0, 0)) == \
- [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
- assert e.normal_lines(Point(1, 0)) == \
- [Line(Point(0, 0), Point(1, 0))]
- assert e.normal_lines((0, 1)) == \
- [Line(Point(0, 0), Point(0, 1))]
- assert line_list_close(e.normal_lines(Point(1, 1), 2), [
- Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))),
- Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2)))], 2)
- # test the failure of Poly.intervals and checks a point on the boundary
- p = Point(sqrt(3), S.Half)
- assert p in e
- assert line_list_close(e.normal_lines(p, 2), [
- Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))),
- Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26)))], 2)
- # be sure to use the slope that isn't undefined on boundary
- e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
- assert line_list_close(e.normal_lines((1, 1), 2), [
- Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))),
- Line(Point(1, -1), Point(2, -4))], 2)
- # general ellipse fails except under certain conditions
- e = Ellipse((0, 0), x, 1)
- assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
- raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
- # Properties
- major = 3
- minor = 1
- e4 = Ellipse(p2, minor, major)
- assert e4.focus_distance == sqrt(major**2 - minor**2)
- ecc = e4.focus_distance / major
- assert e4.eccentricity == ecc
- assert e4.periapsis == major*(1 - ecc)
- assert e4.apoapsis == major*(1 + ecc)
- assert e4.semilatus_rectum == major*(1 - ecc ** 2)
- # independent of orientation
- e4 = Ellipse(p2, major, minor)
- assert e4.focus_distance == sqrt(major**2 - minor**2)
- ecc = e4.focus_distance / major
- assert e4.eccentricity == ecc
- assert e4.periapsis == major*(1 - ecc)
- assert e4.apoapsis == major*(1 + ecc)
- # Intersection
- l1 = Line(Point(1, -5), Point(1, 5))
- l2 = Line(Point(-5, -1), Point(5, -1))
- l3 = Line(Point(-1, -1), Point(1, 1))
- l4 = Line(Point(-10, 0), Point(0, 10))
- pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]
- assert intersection(e2, l4) == []
- assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
- assert intersection(c1, l1) == [Point(1, 0)]
- assert intersection(c1, l2) == [Point(0, -1)]
- assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
- assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
- assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
- assert e1.intersection(l1) == [Point(1, 0)]
- assert e2.intersection(l4) == []
- assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
- assert e1.intersection(Circle(Point(5, 0), 1)) == []
- assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
- assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
- assert e1.intersection(Point(2, 0)) == []
- assert e1.intersection(e1) == e1
- assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
- assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
- assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
- assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
- assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
- assert Circle((0, 0), S.Half).intersection(
- Triangle((-1, 0), (1, 0), (0, 1))) == [
- Point(Rational(-1, 2), 0), Point(S.Half, 0)]
- raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
- raises(TypeError, lambda: intersection(e2, Rational(12)))
- raises(TypeError, lambda: Ellipse.intersection(e2, 1))
- # some special case intersections
- csmall = Circle(p1, 3)
- cbig = Circle(p1, 5)
- cout = Circle(Point(5, 5), 1)
- # one circle inside of another
- assert csmall.intersection(cbig) == []
- # separate circles
- assert csmall.intersection(cout) == []
- # coincident circles
- assert csmall.intersection(csmall) == csmall
- v = sqrt(2)
- t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
- points = intersection(t1, c1)
- assert len(points) == 4
- assert Point(0, 1) in points
- assert Point(0, -1) in points
- assert Point(v/2, v/2) in points
- assert Point(v/2, -v/2) in points
- circ = Circle(Point(0, 0), 5)
- elip = Ellipse(Point(0, 0), 5, 20)
- assert intersection(circ, elip) in \
- [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
- assert elip.tangent_lines(Point(0, 0)) == []
- elip = Ellipse(Point(0, 0), 3, 2)
- assert elip.tangent_lines(Point(3, 0)) == \
- [Line(Point(3, 0), Point(3, -12))]
- e1 = Ellipse(Point(0, 0), 5, 10)
- e2 = Ellipse(Point(2, 1), 4, 8)
- a = Rational(53, 17)
- c = 2*sqrt(3991)/17
- ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
- assert e1.intersection(e2) == ans
- e2 = Ellipse(Point(x, y), 4, 8)
- c = sqrt(3991)
- ans = [Point(-c/68 + a, c*Rational(2, 17) + a/2), Point(c/68 + a, c*Rational(-2, 17) + a/2)]
- assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans
- # Combinations of above
- assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])
- e = Ellipse((1, 2), 3, 2)
- assert e.tangent_lines(Point(10, 0)) == \
- [Line(Point(10, 0), Point(1, 0)),
- Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))]
- # encloses_point
- e = Ellipse((0, 0), 1, 2)
- assert e.encloses_point(e.center)
- assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
- assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
- assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
- assert e.encloses_point(
- e.center + Point(e.hradius + Rational(1, 10), 0)) is False
- e = Ellipse((0, 0), 2, 1)
- assert e.encloses_point(e.center)
- assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
- assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
- assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
- assert e.encloses_point(
- e.center + Point(e.hradius + Rational(1, 10), 0)) is False
- assert c1.encloses_point(Point(1, 0)) is False
- assert c1.encloses_point(Point(0.3, 0.4)) is True
- assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
- assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
- assert e.rotate(pi) == e
- assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
- raises(NotImplementedError, lambda: e.rotate(pi/3))
- # Circle rotation tests (Issue #11743)
- # Link - https://github.com/sympy/sympy/issues/11743
- cir = Circle(Point(1, 0), 1)
- assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
- assert cir.rotate(pi/3) == Circle(Point(S.Half, sqrt(3)/2), 1)
- assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
- assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S.Half + sqrt(3)/2, S.Half + sqrt(3)/2), 1)
- def test_construction():
- e1 = Ellipse(hradius=2, vradius=1, eccentricity=None)
- assert e1.eccentricity == sqrt(3)/2
- e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2)
- assert e2.vradius == 1
- e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2)
- assert e3.hradius == 2
- # filter(None, iterator) filters out anything falsey, including 0
- # eccentricity would be filtered out in this case and the constructor would throw an error
- e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0)
- assert e4.vradius == 1
- #tests for eccentricity > 1
- raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = S(3)/2))
- raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=sec(5)))
- raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=S.Pi-S(2)))
- #tests for eccentricity = 1
- #if vradius is not defined
- assert Ellipse(None, 1, None, 1).length == 2
- #if hradius is not defined
- raises(GeometryError, lambda: Ellipse(None, None, 1, eccentricity = 1))
- #tests for eccentricity < 0
- raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -3))
- raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -0.5))
- def test_ellipse_random_point():
- y1 = Symbol('y1', real=True)
- e3 = Ellipse(Point(0, 0), y1, y1)
- rx, ry = Symbol('rx'), Symbol('ry')
- for ind in range(0, 5):
- r = e3.random_point()
- # substitution should give zero*y1**2
- assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
- # test for the case with seed
- r = e3.random_point(seed=1)
- assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
- def test_repr():
- assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)'
- def test_transform():
- c = Circle((1, 1), 2)
- assert c.scale(-1) == Circle((-1, 1), 2)
- assert c.scale(y=-1) == Circle((1, -1), 2)
- assert c.scale(2) == Ellipse((2, 1), 4, 2)
- assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
- Ellipse(Point(-4, -10), 4, 9)
- assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
- Ellipse(Point(-4, -10), 4, 6)
- assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
- Ellipse(Point(-8, -10), 6, 9)
- assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
- Circle(Point(-8, -10), 6)
- assert Circle(Point(-8, -10), 6).scale(Rational(1, 3), Rational(1, 3), (4, 5)) == \
- Circle((0, 0), 2)
- assert Circle((0, 0), 2).translate(4, 5) == \
- Circle((4, 5), 2)
- assert Circle((0, 0), 2).scale(3, 3) == \
- Circle((0, 0), 6)
- def test_bounds():
- e1 = Ellipse(Point(0, 0), 3, 5)
- e2 = Ellipse(Point(2, -2), 7, 7)
- c1 = Circle(Point(2, -2), 7)
- c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0))
- assert e1.bounds == (-3, -5, 3, 5)
- assert e2.bounds == (-5, -9, 9, 5)
- assert c1.bounds == (-5, -9, 9, 5)
- assert c2.bounds == (-2, -2, 2, 2)
- def test_reflect():
- b = Symbol('b')
- m = Symbol('m')
- l = Line((0, b), slope=m)
- t1 = Triangle((0, 0), (1, 0), (2, 3))
- assert t1.area == -t1.reflect(l).area
- e = Ellipse((1, 0), 1, 2)
- assert e.area == -e.reflect(Line((1, 0), slope=0)).area
- assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
- raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
- assert Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) == Circle(Point2D(1, 0), -1)
- def test_is_tangent():
- e1 = Ellipse(Point(0, 0), 3, 5)
- c1 = Circle(Point(2, -2), 7)
- assert e1.is_tangent(Point(0, 0)) is False
- assert e1.is_tangent(Point(3, 0)) is False
- assert e1.is_tangent(e1) is True
- assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False
- assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True
- assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True
- assert c1.is_tangent(Circle((11, -2), 2)) is True
- assert c1.is_tangent(Circle((7, -2), 2)) is True
- assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False
- assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False
- assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False
- assert c1.is_tangent(Ray((9, 20), (9, -20))) is True
- assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False
- assert e1.is_tangent(Segment((0, 0), (1, 2))) is False
- assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False
- assert e1.is_tangent(Segment((3, 0), (12, 12))) is False
- assert e1.is_tangent(Segment((12, 12), (3, 0))) is False
- assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False
- assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True
- assert e1.is_tangent(Line((10, 0), (10, 10))) is False
- assert e1.is_tangent(Line((0, 0), (1, 1))) is False
- assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False
- assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True
- assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False
- assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False
- assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False
- assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False
- assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False
- assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True
- assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False
- assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False
- assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True
- assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False
- assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False
- raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0)))
- raises(TypeError, lambda: e1.is_tangent(Rational(5)))
- def test_parameter_value():
- t = Symbol('t')
- e = Ellipse(Point(0, 0), 3, 5)
- assert e.parameter_value((3, 0), t) == {t: 0}
- raises(ValueError, lambda: e.parameter_value((4, 0), t))
- @slow
- def test_second_moment_of_area():
- x, y = symbols('x, y')
- e = Ellipse(Point(0, 0), 5, 4)
- I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
- I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
- Y = 3*sqrt(1 - x**2/5**2)
- I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
- assert I_yy == e.second_moment_of_area()[1]
- assert I_xx == e.second_moment_of_area()[0]
- assert I_xy == e.second_moment_of_area()[2]
- #checking for other point
- t1 = e.second_moment_of_area(Point(6,5))
- t2 = (580*pi, 845*pi, 600*pi)
- assert t1==t2
- def test_section_modulus_and_polar_second_moment_of_area():
- d = Symbol('d', positive=True)
- c = Circle((3, 7), 8)
- assert c.polar_second_moment_of_area() == 2048*pi
- assert c.section_modulus() == (128*pi, 128*pi)
- c = Circle((2, 9), d/2)
- assert c.polar_second_moment_of_area() == pi*d**3*Abs(d)/64 + pi*d*Abs(d)**3/64
- assert c.section_modulus() == (pi*d**3/S(32), pi*d**3/S(32))
- a, b = symbols('a, b', positive=True)
- e = Ellipse((4, 6), a, b)
- assert e.section_modulus() == (pi*a*b**2/S(4), pi*a**2*b/S(4))
- assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
- e = e.rotate(pi/2) # no change in polar and section modulus
- assert e.section_modulus() == (pi*a**2*b/S(4), pi*a*b**2/S(4))
- assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
- e = Ellipse((a, b), 2, 6)
- assert e.section_modulus() == (18*pi, 6*pi)
- assert e.polar_second_moment_of_area() == 120*pi
- e = Ellipse(Point(0, 0), 2, 2)
- assert e.section_modulus() == (2*pi, 2*pi)
- assert e.section_modulus(Point(2, 2)) == (2*pi, 2*pi)
- assert e.section_modulus((2, 2)) == (2*pi, 2*pi)
- def test_circumference():
- M = Symbol('M')
- m = Symbol('m')
- assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2)
- assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25)
- # circle
- assert Ellipse(None, 1, None, 0).circumference == 2*pi
- # test numerically
- assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10
- def test_issue_15259():
- assert Circle((1, 2), 0) == Point(1, 2)
- def test_issue_15797_equals():
- Ri = 0.024127189424130748
- Ci = (0.0864931002830291, 0.0819863295239654)
- A = Point(0, 0.0578591400998346)
- c = Circle(Ci, Ri) # evaluated
- assert c.is_tangent(c.tangent_lines(A)[0]) == True
- assert c.center.x.is_Rational
- assert c.center.y.is_Rational
- assert c.radius.is_Rational
- u = Circle(Ci, Ri, evaluate=False) # unevaluated
- assert u.center.x.is_Float
- assert u.center.y.is_Float
- assert u.radius.is_Float
- def test_auxiliary_circle():
- x, y, a, b = symbols('x y a b')
- e = Ellipse((x, y), a, b)
- # the general result
- assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
- # a special case where Ellipse is a Circle
- assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
- def test_director_circle():
- x, y, a, b = symbols('x y a b')
- e = Ellipse((x, y), a, b)
- # the general result
- assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
- # a special case where Ellipse is a Circle
- assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
- def test_evolute():
- #ellipse centered at h,k
- x, y, h, k = symbols('x y h k',real = True)
- a, b = symbols('a b')
- e = Ellipse(Point(h, k), a, b)
- t1 = (e.hradius*(x - e.center.x))**Rational(2, 3)
- t2 = (e.vradius*(y - e.center.y))**Rational(2, 3)
- E = t1 + t2 - (e.hradius**2 - e.vradius**2)**Rational(2, 3)
- assert e.evolute() == E
- #Numerical Example
- e = Ellipse(Point(1, 1), 6, 3)
- t1 = (6*(x - 1))**Rational(2, 3)
- t2 = (3*(y - 1))**Rational(2, 3)
- E = t1 + t2 - (27)**Rational(2, 3)
- assert e.evolute() == E
- def test_svg():
- e1 = Ellipse(Point(1, 0), 3, 2)
- assert e1._svg(2, "#FFAAFF") == '<ellipse fill="#FFAAFF" stroke="#555555" stroke-width="4.0" opacity="0.6" cx="1.00000000000000" cy="0" rx="3.00000000000000" ry="2.00000000000000"/>'
|