123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- from sympy.core.relational import Ne
- from sympy.core.symbol import (Dummy, Symbol, symbols)
- from sympy.functions.elementary.complexes import (adjoint, conjugate, transpose)
- from sympy.functions.elementary.piecewise import Piecewise
- from sympy.functions.special.tensor_functions import (Eijk, KroneckerDelta, LeviCivita)
- from sympy.physics.secondquant import evaluate_deltas, F
- x, y = symbols('x y')
- def test_levicivita():
- assert Eijk(1, 2, 3) == LeviCivita(1, 2, 3)
- assert LeviCivita(1, 2, 3) == 1
- assert LeviCivita(int(1), int(2), int(3)) == 1
- assert LeviCivita(1, 3, 2) == -1
- assert LeviCivita(1, 2, 2) == 0
- i, j, k = symbols('i j k')
- assert LeviCivita(i, j, k) == LeviCivita(i, j, k, evaluate=False)
- assert LeviCivita(i, j, i) == 0
- assert LeviCivita(1, i, i) == 0
- assert LeviCivita(i, j, k).doit() == (j - i)*(k - i)*(k - j)/2
- assert LeviCivita(1, 2, 3, 1) == 0
- assert LeviCivita(4, 5, 1, 2, 3) == 1
- assert LeviCivita(4, 5, 2, 1, 3) == -1
- assert LeviCivita(i, j, k).is_integer is True
- assert adjoint(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
- assert conjugate(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
- assert transpose(LeviCivita(i, j, k)) == LeviCivita(i, j, k)
- def test_kronecker_delta():
- i, j = symbols('i j')
- k = Symbol('k', nonzero=True)
- assert KroneckerDelta(1, 1) == 1
- assert KroneckerDelta(1, 2) == 0
- assert KroneckerDelta(k, 0) == 0
- assert KroneckerDelta(x, x) == 1
- assert KroneckerDelta(x**2 - y**2, x**2 - y**2) == 1
- assert KroneckerDelta(i, i) == 1
- assert KroneckerDelta(i, i + 1) == 0
- assert KroneckerDelta(0, 0) == 1
- assert KroneckerDelta(0, 1) == 0
- assert KroneckerDelta(i + k, i) == 0
- assert KroneckerDelta(i + k, i + k) == 1
- assert KroneckerDelta(i + k, i + 1 + k) == 0
- assert KroneckerDelta(i, j).subs({"i": 1, "j": 0}) == 0
- assert KroneckerDelta(i, j).subs({"i": 3, "j": 3}) == 1
- assert KroneckerDelta(i, j)**0 == 1
- for n in range(1, 10):
- assert KroneckerDelta(i, j)**n == KroneckerDelta(i, j)
- assert KroneckerDelta(i, j)**-n == 1/KroneckerDelta(i, j)
- assert KroneckerDelta(i, j).is_integer is True
- assert adjoint(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
- assert conjugate(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
- assert transpose(KroneckerDelta(i, j)) == KroneckerDelta(i, j)
- # to test if canonical
- assert (KroneckerDelta(i, j) == KroneckerDelta(j, i)) == True
- assert KroneckerDelta(i, j).rewrite(Piecewise) == Piecewise((0, Ne(i, j)), (1, True))
- # Tests with range:
- assert KroneckerDelta(i, j, (0, i)).args == (i, j, (0, i))
- assert KroneckerDelta(i, j, (-j, i)).delta_range == (-j, i)
- # If index is out of range, return zero:
- assert KroneckerDelta(i, j, (0, i-1)) == 0
- assert KroneckerDelta(-1, j, (0, i-1)) == 0
- assert KroneckerDelta(j, -1, (0, i-1)) == 0
- assert KroneckerDelta(j, i, (0, i-1)) == 0
- def test_kronecker_delta_secondquant():
- """secondquant-specific methods"""
- D = KroneckerDelta
- i, j, v, w = symbols('i j v w', below_fermi=True, cls=Dummy)
- a, b, t, u = symbols('a b t u', above_fermi=True, cls=Dummy)
- p, q, r, s = symbols('p q r s', cls=Dummy)
- assert D(i, a) == 0
- assert D(i, t) == 0
- assert D(i, j).is_above_fermi is False
- assert D(a, b).is_above_fermi is True
- assert D(p, q).is_above_fermi is True
- assert D(i, q).is_above_fermi is False
- assert D(q, i).is_above_fermi is False
- assert D(q, v).is_above_fermi is False
- assert D(a, q).is_above_fermi is True
- assert D(i, j).is_below_fermi is True
- assert D(a, b).is_below_fermi is False
- assert D(p, q).is_below_fermi is True
- assert D(p, j).is_below_fermi is True
- assert D(q, b).is_below_fermi is False
- assert D(i, j).is_only_above_fermi is False
- assert D(a, b).is_only_above_fermi is True
- assert D(p, q).is_only_above_fermi is False
- assert D(i, q).is_only_above_fermi is False
- assert D(q, i).is_only_above_fermi is False
- assert D(a, q).is_only_above_fermi is True
- assert D(i, j).is_only_below_fermi is True
- assert D(a, b).is_only_below_fermi is False
- assert D(p, q).is_only_below_fermi is False
- assert D(p, j).is_only_below_fermi is True
- assert D(q, b).is_only_below_fermi is False
- assert not D(i, q).indices_contain_equal_information
- assert not D(a, q).indices_contain_equal_information
- assert D(p, q).indices_contain_equal_information
- assert D(a, b).indices_contain_equal_information
- assert D(i, j).indices_contain_equal_information
- assert D(q, b).preferred_index == b
- assert D(q, b).killable_index == q
- assert D(q, t).preferred_index == t
- assert D(q, t).killable_index == q
- assert D(q, i).preferred_index == i
- assert D(q, i).killable_index == q
- assert D(q, v).preferred_index == v
- assert D(q, v).killable_index == q
- assert D(q, p).preferred_index == p
- assert D(q, p).killable_index == q
- EV = evaluate_deltas
- assert EV(D(a, q)*F(q)) == F(a)
- assert EV(D(i, q)*F(q)) == F(i)
- assert EV(D(a, q)*F(a)) == D(a, q)*F(a)
- assert EV(D(i, q)*F(i)) == D(i, q)*F(i)
- assert EV(D(a, b)*F(a)) == F(b)
- assert EV(D(a, b)*F(b)) == F(a)
- assert EV(D(i, j)*F(i)) == F(j)
- assert EV(D(i, j)*F(j)) == F(i)
- assert EV(D(p, q)*F(q)) == F(p)
- assert EV(D(p, q)*F(p)) == F(q)
- assert EV(D(p, j)*D(p, i)*F(i)) == F(j)
- assert EV(D(p, j)*D(p, i)*F(j)) == F(i)
- assert EV(D(p, q)*D(p, i))*F(i) == D(q, i)*F(i)
|