123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- from sympy.core.containers import Tuple
- from sympy.core.function import Derivative
- from sympy.core.numbers import (I, Rational, oo, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import cos
- from sympy.functions.special.gamma_functions import gamma
- from sympy.functions.special.hyper import (appellf1, hyper, meijerg)
- from sympy.series.order import O
- from sympy.abc import x, z, k
- from sympy.series.limits import limit
- from sympy.testing.pytest import raises, slow
- from sympy.core.random import (
- random_complex_number as randcplx,
- verify_numerically as tn,
- test_derivative_numerically as td)
- def test_TupleParametersBase():
- # test that our implementation of the chain rule works
- p = hyper((), (), z**2)
- assert p.diff(z) == p*2*z
- def test_hyper():
- raises(TypeError, lambda: hyper(1, 2, z))
- assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z)
- h = hyper((1, 2), (3, 4, 5), z)
- assert h.ap == Tuple(1, 2)
- assert h.bq == Tuple(3, 4, 5)
- assert h.argument == z
- assert h.is_commutative is True
- # just a few checks to make sure that all arguments go where they should
- assert tn(hyper(Tuple(), Tuple(), z), exp(z), z)
- assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z)
- # differentiation
- h = hyper(
- (randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z)
- assert td(h, z)
- a1, a2, b1, b2, b3 = symbols('a1:3, b1:4')
- assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \
- a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z)
- # differentiation wrt parameters is not supported
- assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z)
- # hyper is unbranched wrt parameters
- from sympy.functions.elementary.complexes import polar_lift
- assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \
- hyper([z], [k], polar_lift(x))
- # hyper does not automatically evaluate anyway, but the test is to make
- # sure that the evaluate keyword is accepted
- assert hyper((1, 2), (1,), z, evaluate=False).func is hyper
- def test_expand_func():
- # evaluation at 1 of Gauss' hypergeometric function:
- from sympy.abc import a, b, c
- from sympy.core.function import expand_func
- a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5
- assert expand_func(hyper([a, b], [c], 1)) == \
- gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c))
- assert abs(expand_func(hyper([a1, b1], [c1], 1)).n()
- - hyper([a1, b1], [c1], 1).n()) < 1e-10
- # hyperexpand wrapper for hyper:
- assert expand_func(hyper([], [], z)) == exp(z)
- assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z)
- assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1)
- assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \
- meijerg([[1, 1], []], [[], []], z)
- def replace_dummy(expr, sym):
- from sympy.core.symbol import Dummy
- dum = expr.atoms(Dummy)
- if not dum:
- return expr
- assert len(dum) == 1
- return expr.xreplace({dum.pop(): sym})
- def test_hyper_rewrite_sum():
- from sympy.concrete.summations import Sum
- from sympy.core.symbol import Dummy
- from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial)
- _k = Dummy("k")
- assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \
- Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) /
- RisingFactorial(3, _k), (_k, 0, oo))
- assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \
- hyper((1, 2, 3), (-1, 3), z)
- def test_radius_of_convergence():
- assert hyper((1, 2), [3], z).radius_of_convergence == 1
- assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo
- assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0
- assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo
- assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0
- assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo
- assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0
- assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1
- assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo
- assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0
- assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo
- assert hyper([1, 1], [3], 1).convergence_statement == True
- assert hyper([1, 1], [2], 1).convergence_statement == False
- assert hyper([1, 1], [2], -1).convergence_statement == True
- assert hyper([1, 1], [1], -1).convergence_statement == False
- def test_meijer():
- raises(TypeError, lambda: meijerg(1, z))
- raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z))
- assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \
- meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z)
- g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z)
- assert g.an == Tuple(1, 2)
- assert g.ap == Tuple(1, 2, 3, 4, 5)
- assert g.aother == Tuple(3, 4, 5)
- assert g.bm == Tuple(6, 7, 8, 9)
- assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14)
- assert g.bother == Tuple(10, 11, 12, 13, 14)
- assert g.argument == z
- assert g.nu == 75
- assert g.delta == -1
- assert g.is_commutative is True
- assert g.is_number is False
- #issue 13071
- assert meijerg([[],[]], [[S.Half],[0]], 1).is_number is True
- assert meijerg([1, 2], [3], [4], [5], z).delta == S.Half
- # just a few checks to make sure that all arguments go where they should
- assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z)
- assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(),
- Tuple(0), Tuple(S.Half), z**2/4), cos(z), z)
- assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z),
- log(1 + z), z)
- # test exceptions
- raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((oo,), (2, 0)), x))
- raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((1,), (2, 0)), x))
- # differentiation
- g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(),
- (randcplx(), randcplx()), z)
- assert td(g, z)
- g = meijerg(Tuple(), (randcplx(),), Tuple(),
- (randcplx(), randcplx()), z)
- assert td(g, z)
- g = meijerg(Tuple(), Tuple(), Tuple(randcplx()),
- Tuple(randcplx(), randcplx()), z)
- assert td(g, z)
- a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3')
- assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \
- (meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z)
- + (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z
- assert meijerg([z, z], [], [], [], z).diff(z) == \
- Derivative(meijerg([z, z], [], [], [], z), z)
- # meijerg is unbranched wrt parameters
- from sympy.functions.elementary.complexes import polar_lift as pl
- assert meijerg([pl(a1)], [pl(a2)], [pl(b1)], [pl(b2)], pl(z)) == \
- meijerg([a1], [a2], [b1], [b2], pl(z))
- # integrand
- from sympy.abc import a, b, c, d, s
- assert meijerg([a], [b], [c], [d], z).integrand(s) == \
- z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1))
- def test_meijerg_derivative():
- assert meijerg([], [1, 1], [0, 0, x], [], z).diff(x) == \
- log(z)*meijerg([], [1, 1], [0, 0, x], [], z) \
- + 2*meijerg([], [1, 1, 1], [0, 0, x, 0], [], z)
- y = randcplx()
- a = 5 # mpmath chokes with non-real numbers, and Mod1 with floats
- assert td(meijerg([x], [], [], [], y), x)
- assert td(meijerg([x**2], [], [], [], y), x)
- assert td(meijerg([], [x], [], [], y), x)
- assert td(meijerg([], [], [x], [], y), x)
- assert td(meijerg([], [], [], [x], y), x)
- assert td(meijerg([x], [a], [a + 1], [], y), x)
- assert td(meijerg([x], [a + 1], [a], [], y), x)
- assert td(meijerg([x, a], [], [], [a + 1], y), x)
- assert td(meijerg([x, a + 1], [], [], [a], y), x)
- b = Rational(3, 2)
- assert td(meijerg([a + 2], [b], [b - 3, x], [a], y), x)
- def test_meijerg_period():
- assert meijerg([], [1], [0], [], x).get_period() == 2*pi
- assert meijerg([1], [], [], [0], x).get_period() == 2*pi
- assert meijerg([], [], [0], [], x).get_period() == 2*pi # exp(x)
- assert meijerg(
- [], [], [0], [S.Half], x).get_period() == 2*pi # cos(sqrt(x))
- assert meijerg(
- [], [], [S.Half], [0], x).get_period() == 4*pi # sin(sqrt(x))
- assert meijerg([1, 1], [], [1], [0], x).get_period() is oo # log(1 + x)
- def test_hyper_unpolarify():
- from sympy.functions.elementary.exponential import exp_polar
- a = exp_polar(2*pi*I)*x
- b = x
- assert hyper([], [], a).argument == b
- assert hyper([0], [], a).argument == a
- assert hyper([0], [0], a).argument == b
- assert hyper([0, 1], [0], a).argument == a
- assert hyper([0, 1], [0], exp_polar(2*pi*I)).argument == 1
- @slow
- def test_hyperrep():
- from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh,
- HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
- HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
- HyperRep_cosasin, HyperRep_sinasin)
- # First test the base class works.
- from sympy.functions.elementary.exponential import exp_polar
- from sympy.functions.elementary.piecewise import Piecewise
- a, b, c, d, z = symbols('a b c d z')
- class myrep(HyperRep):
- @classmethod
- def _expr_small(cls, x):
- return a
- @classmethod
- def _expr_small_minus(cls, x):
- return b
- @classmethod
- def _expr_big(cls, x, n):
- return c*n
- @classmethod
- def _expr_big_minus(cls, x, n):
- return d*n
- assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True))
- assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \
- Piecewise((0, abs(z) > 1), (b, True))
- assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \
- Piecewise((c, abs(z) > 1), (a, True))
- assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \
- Piecewise((d, abs(z) > 1), (b, True))
- assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \
- Piecewise((2*c, abs(z) > 1), (a, True))
- assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \
- Piecewise((2*d, abs(z) > 1), (b, True))
- assert myrep(z).rewrite('nonrepsmall') == a
- assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b
- def t(func, hyp, z):
- """ Test that func is a valid representation of hyp. """
- # First test that func agrees with hyp for small z
- if not tn(func.rewrite('nonrepsmall'), hyp, z,
- a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
- return False
- # Next check that the two small representations agree.
- if not tn(
- func.rewrite('nonrepsmall').subs(
- z, exp_polar(I*pi)*z).replace(exp_polar, exp),
- func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'),
- z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
- return False
- # Next check continuity along exp_polar(I*pi)*t
- expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep')
- if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10:
- return False
- # Finally check continuity of the big reps.
- def dosubs(func, a, b):
- rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep')
- return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp)
- for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
- expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
- expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
- if not tn(expr1, expr2, z):
- return False
- expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
- expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
- if not tn(expr1, expr2, z):
- return False
- return True
- # Now test the various representatives.
- a = Rational(1, 3)
- assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z)
- assert t(HyperRep_power1(a, z), hyper([-a], [], z), z)
- assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z)
- assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z)
- assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z)
- assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z)
- assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z)
- assert t(HyperRep_sqrts2(a, z),
- -2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z)
- assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z)
- assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z)
- assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z)
- @slow
- def test_meijerg_eval():
- from sympy.functions.elementary.exponential import exp_polar
- from sympy.functions.special.bessel import besseli
- from sympy.abc import l
- a = randcplx()
- arg = x*exp_polar(k*pi*I)
- expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
- expr2 = besseli(a, arg)
- # Test that the two expressions agree for all arguments.
- for x_ in [0.5, 1.5]:
- for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
- assert abs((expr1 - expr2).n(subs={x: x_, k: k_})) < 1e-10
- assert abs((expr1 - expr2).n(subs={x: x_, k: -k_})) < 1e-10
- # Test continuity independently
- eps = 1e-13
- expr2 = expr1.subs(k, l)
- for x_ in [0.5, 1.5]:
- for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
- assert abs((expr1 - expr2).n(
- subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
- assert abs((expr1 - expr2).n(
- subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10
- expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
- + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
- /(2*sqrt(pi))
- assert (expr - pi/exp(1)).n(chop=True) == 0
- def test_limits():
- k, x = symbols('k, x')
- assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \
- 1 + 9*k**2/20 + 81*k**4/1120 + O(k**6) # issue 6350
- # https://github.com/sympy/sympy/issues/11465
- assert limit(1/hyper((1, ), (1, ), x), x, 0) == 1
- def test_appellf1():
- a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
- assert appellf1(a, b2, b1, c, y, x) == appellf1(a, b1, b2, c, x, y)
- assert appellf1(a, b1, b1, c, y, x) == appellf1(a, b1, b1, c, x, y)
- assert appellf1(a, b1, b2, c, S.Zero, S.Zero) is S.One
- f = appellf1(a, b1, b2, c, S.Zero, S.Zero, evaluate=False)
- assert f.func is appellf1
- assert f.doit() is S.One
- def test_derivative_appellf1():
- from sympy.core.function import diff
- a, b1, b2, c, x, y, z = symbols('a b1 b2 c x y z')
- assert diff(appellf1(a, b1, b2, c, x, y), x) == a*b1*appellf1(a + 1, b2, b1 + 1, c + 1, y, x)/c
- assert diff(appellf1(a, b1, b2, c, x, y), y) == a*b2*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)/c
- assert diff(appellf1(a, b1, b2, c, x, y), z) == 0
- assert diff(appellf1(a, b1, b2, c, x, y), a) == Derivative(appellf1(a, b1, b2, c, x, y), a)
- def test_eval_nseries():
- a1, b1, a2, b2 = symbols('a1 b1 a2 b2')
- assert hyper((1,2), (1,2,3), x**2)._eval_nseries(x, 7, None) == 1 + x**2/3 + x**4/24 + x**6/360 + O(x**7)
- assert exp(x)._eval_nseries(x,7,None) == hyper((a1, b1), (a1, b1), x)._eval_nseries(x, 7, None)
- assert hyper((a1, a2), (b1, b2), x)._eval_nseries(z, 7, None) == hyper((a1, a2), (b1, b2), x) + O(z**7)
|